\(x^2-8x+15=0\\ \Leftrightarrow x^2-5x-3x+15=0\\ \Leftrightarrow x\left(x-5\right)-3\left(x-5\right)=0\\ \Leftrightarrow\left(x-3\right)\left(x-5\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=3\\x=5\end{matrix}\right.\)
=>(x-5)(x-3)=0
=>x=5 hoặc x=3
\(x^2-3x-5x+15=0\)
\(\left(x-3\right)\left(x-5\right)\)\
=> x \(\in\) { 3:5}
x2 − 3x − 5x + 15 =0
(x−3) (x−5)\
=> x ∈ { 3:5 }

