a: Xét ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC
nên \(AH^2=HB\cdot HC\)
hay AH=4(cm)
Xét ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC
nên \(\left\{{}\begin{matrix}AB^2=BH\cdot BC\\AC^2=CH\cdot BC\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}AB=2\sqrt{5}\left(cm\right)\\AC=4\sqrt{5}\left(cm\right)\end{matrix}\right.\)
Ta có: BH+CH=BC
nên BC=10(cm)
Xét ΔABC vuông tại A có
\(\sin\widehat{B}=\dfrac{AC}{BC}=\dfrac{4\sqrt{5}}{10}=\dfrac{2\sqrt{5}}{5}\)
\(\Leftrightarrow\widehat{B}\simeq63^0\)
\(\Leftrightarrow\widehat{C}\simeq27^0\)