A=\(3\sqrt{2}-4\sqrt{18}+2\sqrt{32}-\sqrt{50}\)
A=\(3\sqrt{2}-12\sqrt{2}+8\sqrt{2}-5\sqrt{2}\)
A=-6\(\sqrt{2}\)
B=2-\(\sqrt{3}+1-\sqrt{3}-\dfrac{2}{3}.-3\)
B=5-2\(\sqrt{3}\)
C=\(\dfrac{3+2\sqrt{3}}{\sqrt{3}}+\dfrac{2\left(1+\sqrt{2}\right)}{\sqrt{2}+1}-2-\sqrt{3}\)
C=\(\dfrac{3+2\sqrt{3}}{\sqrt{3}}-\dfrac{3}{\sqrt{3}}\)
C=2
D=\(\left(\dfrac{\sqrt{5}+\sqrt{3}}{5-3}+\dfrac{\sqrt{5}-\sqrt{3}}{5-3}\right).\dfrac{1}{\sqrt{5}}\)
D=\(\sqrt{5}.\dfrac{1}{\sqrt{5}}\)
D=1
a: Ta có: \(A=3\sqrt{2}-4\sqrt{18}+2\sqrt{32}-\sqrt{50}\)
\(=3\sqrt{2}-12\sqrt{2}+8\sqrt{2}-5\sqrt{2}\)
\(=-6\sqrt{2}\)
c: Ta có: \(C=\dfrac{3+2\sqrt{3}}{\sqrt{3}}+\dfrac{2+2\sqrt{2}}{\sqrt{2}+1}-\left(2+\sqrt{3}\right)\)
\(=2+\sqrt{3}+2-2-\sqrt{3}\)
=2

