Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Hy Trần
ngAsnh
30 tháng 8 2021 lúc 9:49

a) \(A=\left(\dfrac{\sqrt{x}-2}{x-1}-\dfrac{\sqrt{x}+2}{x+2\sqrt{x}+1}\right).\dfrac{\left(1-x\right)^2}{2}\)

\(A=\left(\dfrac{\sqrt{x}-2}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}-\dfrac{\sqrt{x}+2}{\left(\sqrt{x}+1\right)^2}\right).\dfrac{\left(1-x\right)^2}{2}\)

\(A=\dfrac{\left(\sqrt{x}-2\right)\left(\sqrt{x}+1\right)-\left(\sqrt{x}+2\right)\left(\sqrt{x}-1\right)}{-\left(1-x\right)\left(\sqrt{x}+1\right)}.\dfrac{\left(1-x\right)^2}{2}\)

\(A=\dfrac{x-\sqrt{x}-2-x-\sqrt{x}+2}{-\left(\sqrt{x}+1\right)}.\dfrac{1-x}{2}\)

\(A=\dfrac{\sqrt{x}\left(1-\sqrt{x}\right)\left(1+\sqrt{x}\right)}{\left(\sqrt{x}+1\right)}=\sqrt{x}-x\)

b) Để A dương 

\(\sqrt{x}-x>0\)

\(\sqrt{x}\left(1-\sqrt{x}\right)>0\)

\(\Rightarrow0< x< 1\)

c) \(A=-\left(x-\sqrt{x}+\dfrac{1}{4}\right)+\dfrac{1}{4}\)

\(A=-\left(\sqrt{x}-\dfrac{1}{2}\right)^2+\dfrac{1}{4}\)

\(A_{max}=\dfrac{1}{4}\Leftrightarrow\sqrt{x}=\dfrac{1}{2}\Leftrightarrow x=\dfrac{1}{4}\)

 

Nguyễn Hoàng Minh
30 tháng 8 2021 lúc 9:54

\(a,A=\left(\dfrac{\sqrt{x}-2}{x-1}-\dfrac{\sqrt{x}+2}{x+2\sqrt{x}+1}\right)\cdot\dfrac{\left(1-x\right)^2}{2}\left(x\ge0,x\ne1\right)\\ A=\dfrac{\left(\sqrt{x}-2\right)\left(\sqrt{x}+1\right)-\left(\sqrt{x}+2\right)\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)^2}\cdot\dfrac{\left(x-1\right)^2}{2}\\ A=\dfrac{x-\sqrt{x}-1-x-\sqrt{x}+1}{\left(x-1\right)\left(\sqrt{x}+1\right)}\cdot\dfrac{\left(x-1\right)^2}{2}\\ A=\dfrac{-2\sqrt{x}\left(x-1\right)}{2\left(\sqrt{x}+1\right)}\\ A=\dfrac{-2\sqrt{x}\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}{2\left(\sqrt{x}+1\right)}=-\sqrt{x}\left(\sqrt{x}-1\right)\)

\(b,\) Để A dương \(\Leftrightarrow A>0\Leftrightarrow-\sqrt{x}\left(\sqrt{x}-1\right)>0\)

\(\Leftrightarrow\sqrt{x}-1< 0\left(-\sqrt{x}< 0\Leftrightarrow0< x\right)\\ \Leftrightarrow0< x< 1\)

\(c,A=-\sqrt{x}\left(\sqrt{x}-1\right)\\ =\sqrt{x}-x\\ =-\left(x-\sqrt{x}+\dfrac{1}{4}\right)+\dfrac{1}{4}\\ =-\left(\sqrt{x}-\dfrac{1}{2}\right)^2+\dfrac{1}{4}\le\dfrac{1}{4}\)

Dấu \("="\Leftrightarrow\sqrt{x}=\dfrac{1}{2}\Leftrightarrow x=\dfrac{1}{4}\) 

Nguyễn Lê Phước Thịnh
30 tháng 8 2021 lúc 14:50

a: Ta có: \(A=\left(\dfrac{\sqrt{x}-2}{x-1}-\dfrac{\sqrt{x}+2}{x+2\sqrt{x}+1}\right)\cdot\dfrac{\left(x-1\right)^2}{2}\)

\(=\dfrac{\left(\sqrt{x}-2\right)\left(\sqrt{x}+1\right)-\left(\sqrt{x}+2\right)\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)\cdot\left(\sqrt{x}+1\right)^2}\cdot\dfrac{\left(\sqrt{x}-1\right)^2\cdot\left(\sqrt{x}+1\right)^2}{2}\)

\(=\dfrac{x-\sqrt{x}-2-x-\sqrt{x}-2}{1}\cdot\dfrac{\sqrt{x}-1}{2}\)

\(=-\sqrt{x}\left(\sqrt{x}-1\right)\)


Các câu hỏi tương tự
Xuân Thường Đặng
Xem chi tiết
Thảo Thảo
Xem chi tiết
Nguyên
Xem chi tiết
Đỗ Thành Đạt
Xem chi tiết
Pham Trong Bach
Xem chi tiết
gh
Xem chi tiết
LovE _ Khánh Ly_ LovE
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Trần Thủy Tiên
Xem chi tiết