\(n\in Z\Rightarrow\dfrac{n+3}{n-1}\in Z\)
Để \(\dfrac{n+3}{n-1}\in Z\)
\(\Rightarrow\left(n+3\right)⋮\left(n-1\right)\\ \Rightarrow\left(n-1+4\right)⋮\left(n-1\right)\)
Vì \(\left(n-1\right)⋮\left(n-1\right)\)\(\Rightarrow4⋮\left(n-1\right)\Rightarrow n-1\inƯ\left(4\right)=\left\{\pm1;\pm2;\pm4\right\}\)
Ta có bảng:
n-1 | -1 | 1 | -2 | 2 | -4 | 4 |
n | 0 | 2 | -1 | 3 | -3 | 5 |
Vậy \(n\in\left\{0;2;-1;3;-3;5\right\}\)
Để phân số \(\dfrac{n+3}{n-1}\) là số nguyên thì \(n+3⋮n-1\)
\(\Leftrightarrow n-1\in\left\{1;-1;2;-2;4;-4\right\}\)
hay \(n\in\left\{2;0;3;-1;5;-3\right\}\)