Bài 2:
a) Ta có: \(B=\dfrac{\left(\sqrt{x}\right)\left(1-x\right)^2}{1+x}:\left[\left(\dfrac{x\sqrt{x}-1}{\sqrt{x}-1}+\sqrt{x}\right)\left(\dfrac{x\sqrt{x}+1}{\sqrt{x}+1}-\sqrt{x}\right)\right]\)
\(=\dfrac{\sqrt{x}\left(x-1\right)^2}{x+1}:\left[\left(x+2\sqrt{x}+1\right)\left(x-2\sqrt{x}+1\right)\right]\)
\(=\dfrac{\sqrt{x}\left(x-1\right)^2}{x+1}:\left(x-1\right)^2\)
\(=\dfrac{\sqrt{x}\left(x-1\right)^2}{x+1}\cdot\dfrac{1}{\left(x-1\right)^2}\)
\(=\dfrac{\sqrt{x}}{x+1}\)