a) \(x^3-\left(2m+1\right)x^2-\left(3m^2-6m+2\right)x+3m^2-4m+2=0\left(1\right)\)
\(\Leftrightarrow\left(x-1\right)\left(x^2-2mx-3m^2+4m-2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=1\\g\left(x\right)=x^2-2mx-3m^2+4m-2=0\left(2\right)\end{matrix}\right.\)
\(PT\left(2\right)\) có \(\Delta'=4+3m^2-4m+2=3m^2-4m+7>0;\forall m\in R\left(\Delta'_m=-17< 0;a=3>0\right)\)
mà \(g\left(1\right)=-3m^2+2m-1< 0;\forall m\in R\left(\Delta'_{gm}=-2;a=-3< 0\right)\)
\(\Rightarrow PT\left(2\right)\) có \(2\) nghiệm phân biệt khác \(1\)
\(\Rightarrow\left(1\right)\) luôn có \(3\) nghiệm phân biệt \(x_1=1;x_2;x_3\ne1\)
b) \(E=x_1+\left|x_2-x_3\right|=1+\left|x_2-x_3\right|\)
\(\left|x_2-x_3\right|=\sqrt{\left(x_2-x_3\right)^2}=\sqrt{\left(x_2+x_3\right)^2-4x_2x_3}\)
mà theo Vi ét cho \(\left(2\right)\Rightarrow\left\{{}\begin{matrix}x_2+x_3=2m\\x_2x_3=-3m^2+4m-2\end{matrix}\right.\)
\(\left|x_2-x_3\right|=\sqrt{4m^2-4\left(-3m^2+4m-2\right)}=\sqrt{16m^2-16m+8}\)
\(=2\sqrt{4m^2-4m+2}=2\sqrt{\left(2m-1\right)^2+1}\ge2;\forall m\in R\)
\(\Rightarrow E=1+\left|x_2+x_3\right|\ge1+2=3\)
Dấu '=' xảy ra khi \(2m-1=0\Leftrightarrow m=\dfrac{1}{2}\)
Vậy với \(m=\dfrac{1}{2}\) thì \(E\left(GTNN\right)=3\) thỏa đề bài