a) \(\overrightarrow{AB}=\left(-2;-1;1\right)\)
\(\overrightarrow{DC}=\left(-2;-1;1\right)\)
\(\Rightarrow\overrightarrow{AB}=\overrightarrow{DC}=\left(-2;-2;1\right)\Rightarrow\) \(ABCD\) là hình bình hành \(\RightarrowĐúng\)
b) \(AB=\sqrt{\left(-2\right)^2+\left(-1\right)^2+1^2}=\sqrt{6}\RightarrowĐúng\)
c) \(E\in Oy\Rightarrow E\left(0;y;0\right)\)
\(\overrightarrow{BE}=\left(1;y;-1\right)\)
\(\overrightarrow{CE}=\left(-1;y+2;-3\right)\)
Để tam giác \(BCE\) vuông tại \(E\) khi và chỉ khi
\(\Leftrightarrow\overrightarrow{BE}.\overrightarrow{CE}=0\Leftrightarrow-1+y^2+2y+3=0\Leftrightarrow y^2+2y+2=0\)
\(\Leftrightarrow y\in\varnothing\left(\Delta'=-1< 0\right)\Rightarrow Sai\)
d) Gọi \(M\left(x;y;z\right)\)
\(MA=2MB\Leftrightarrow\overrightarrow{AM}=\dfrac{2}{3}\overrightarrow{AB}\)
\(\Leftrightarrow\left(x-1;y-1;z\right)=\dfrac{2}{3}\left(-2;-1;1\right)\)
\(\Leftrightarrow\left(3x-3;3y-3;3z\right)=\left(-4;-2;2\right)\)
\(\Leftrightarrow\left\{{}\begin{matrix}3x-3=-4\\3y-3=-2\\3z=2\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=-\dfrac{1}{3}\\y=\dfrac{1}{3}\\z=\dfrac{2}{3}\end{matrix}\right.\) \(\Rightarrow M\left(-\dfrac{1}{3};\dfrac{1}{3};\dfrac{2}{3}\right)\)
\(\Rightarrow OM=\sqrt{\left(-\dfrac{1}{3}-0\right)^2+\left(\dfrac{1}{3}-0\right)^2+\left(\dfrac{2}{3}-0\right)^2}=\sqrt{\dfrac{6}{9}}=\dfrac{\sqrt{6}}{3}\RightarrowĐúng\)