Gọi \(G\) là trọng tâm tam giác \(ABC\)
\(\Rightarrow G\left(\dfrac{3+2+1}{3};\dfrac{4+3+2}{3};\dfrac{1+2+9}{3}\right)=\left(2;3;4\right)\)
\(MA^2=\left|\overrightarrow{MA}\right|^2=\left|\overrightarrow{MG}+\overrightarrow{GA}\right|^2=MG^2+GA^2+2\overrightarrow{MG}.\overrightarrow{GA}\)
Tương tự ta có : \(MB^2=MG^2+GB^2+2\overrightarrow{MG}.\overrightarrow{GB}\)
\(MC^2=MG^2+GC^2+2\overrightarrow{MG}.\overrightarrow{GC}\)
\(\Rightarrow MA^2+MB^2+MC^2=3MG^2+GA^2+GB^2+GC^2+2\overrightarrow{MG}\left(\overrightarrow{GA}+\overrightarrow{GB}+\overrightarrow{GC}\right)\)
mà \(\overrightarrow{GA}+\overrightarrow{GB}+\overrightarrow{GC}=\overrightarrow{0}\) (\(G\) là trọng tâm tam giác \(ABC\))
\(\Rightarrow MA^2+MB^2+MC^2=3MG^2+GA^2+GB^2+GC^2\)
\(\Leftrightarrow3MG^2+GA^2+GB^2+GC^2=69\left(1\right)\)
\(GA^2=\left(3-2\right)^2+\left(4-3\right)^2+\left(1-4\right)^2=11\)
\(GB^2=\left(2-2\right)^2+\left(3-3\right)^2+\left(2-4\right)^2=4\)
\(GC^2=\left(1-2\right)^2+\left(2-3\right)^2+\left(9-4\right)^2=27\)
\(\left(1\right)\Rightarrow3MG^2+11+4+25=69\)
\(\Leftrightarrow3MG^2=27\)
\(\Leftrightarrow MG=3\)
Vậy tập hợp điểm \(M\) thoả mãn \(MA^2+MB^2+MC^2=69\) là mặt cầu tâm \(G\left(2;3;4\right)\) ;bán kính \(R=3\) có phương trình là :
\(\left(x-2\right)^2+\left(y-3\right)^2+\left(z-4\right)^2=9\)