biết là là thằng Dũng mà. Chỉ có nó mới gọi tui như thế !
Ngyễn đÌNH dŨNG THÍCH Trần Thùy Dung
biết là là thằng Dũng mà. Chỉ có nó mới gọi tui như thế !
Ngyễn đÌNH dŨNG THÍCH Trần Thùy Dung
Chứng minh rằng:\(\frac{43}{44}\le\frac{1}{2+\sqrt{2}}+\frac{1}{3\sqrt{2}+2\sqrt{3}}+...+\frac{1}{2016\sqrt{2015}+2015\sqrt{2016}}\le\frac{44}{45}\)
Cho x;y;z>0. Chứng minh rằng: \(\frac{2\sqrt{x}}{x^3+y^2}+\frac{2\sqrt{y}}{y^3+z^2}+\frac{2\sqrt{z}}{z^3+y^2}\le\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}\)\(\frac{1}{z^2}\)
\(\frac{1}{\sqrt{2x}-3}+\frac{4}{\sqrt{y}-2}+\frac{16}{\sqrt{3z-1}}+\sqrt{2x-3}+\sqrt{y-2}+\sqrt{3z-1}=14\)
Tìm x,y,z
Cho x, y, z là 3 số nguyên dương và \(Q=\frac{1}{\sqrt{2x-3}}+\frac{4}{\sqrt{y-2}}+\frac{16}{\sqrt{3z-1}}+\sqrt{2x-3}+\sqrt{y-2}+\sqrt{3z-1}\)
cho cac si thuc duong x,y,z thỏa mãn \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=3\)
tìm Max của P=\(\frac{1}{\sqrt{2x^2+y^2+3}}+\frac{1}{\sqrt{2y^2+z^2+3}}+\frac{1}{\sqrt{2z^2+x^2+3}}\)
\(x+y=4\Rightarrow\frac{x+y}{2}=2\Rightarrow\sqrt{\frac{x+y}{2}}=\sqrt{2}\)
\(P.\sqrt{\frac{x+y}{2}}=\sqrt{2}\sqrt{x^2+\frac{1}{x^2}}+\sqrt{2}\sqrt{x^2+\frac{1}{x^2}}\)
\(\Leftrightarrow\sqrt{2}P=\sqrt{1+1}\sqrt{x^2+\frac{1}{x^2}}+\sqrt{1+1}\sqrt{x^2+\frac{1}{x^2}}\)
\(\Leftrightarrow\sqrt{2}P\ge x+\frac{1}{x}+y+\frac{1}{y}\)
\(x+\frac{1}{x}=\left(\frac{1}{x}+4x\right)-3x\ge4-3x\)
\(y+\frac{1}{y}=\left(\frac{1}{y}+4y\right)-3y\ge4-3y\)
\(\Rightarrow\sqrt{2}P\ge8-3\left(x+y\right)=8-3.4=-4\)
đến đay sau răng
Cho x,y,z là các số thực dương thỏa mãn \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=3\)
Tìm max của \(P=\frac{1}{\sqrt{2x^2+y^2+3}}+\frac{1}{\sqrt{2y^2+z^2+3}}+\frac{1}{\sqrt{2z^2+x^2+3}}\)
cho x,y,z là ba số nguyên dương và Q=\(\frac{1}{\sqrt{2x-3}}+\frac{4}{\sqrt{y-2}}+\frac{16}{\sqrt{3z-1}}+\sqrt{2x-3}+\sqrt{y-2}+\sqrt{3z-1}\). tìm giá trị nhỏ nhất của Q
Cho x,y,z là ba số nguyên dương và Q=\(\frac{1}{\sqrt{2x-3}}+\frac{4}{\sqrt{y-2}}+\frac{16}{\sqrt{3z-1}}+\sqrt{2x-3}+\sqrt{y-2}+\sqrt{3z-1}\). Tìm giá trị nhỏ nhất của Q?