c: \(BD\cdot BK=BH\cdot BC\)
=>\(\dfrac{BD}{BC}=\dfrac{BH}{BK}\)
Xét ΔBDH và ΔBCK có
\(\dfrac{BD}{BC}=\dfrac{BH}{BK}\)
\(\widehat{DBH}\) chung
Do đó: ΔBDH~ΔBCK
=>\(\dfrac{S_{BDH}}{S_{BCK}}=\left(\dfrac{BH}{BK}\right)^2=\dfrac{BH}{BK}\cdot\dfrac{BD}{BC}=\dfrac{BH}{BC}\cdot\dfrac{BD}{BK}\)
\(=\dfrac{1}{4}\cdot\dfrac{BD\cdot BK}{BK^2}=\dfrac{1}{4}\cdot\dfrac{BA^2}{BK^2}=\dfrac{1}{4}\cdot cos^2ABD\)
=>\(S_{BDH}=\dfrac{1}{4}\cdot S_{BCK}\cdot cos^2ABD\)