\(z=x+yi\Rightarrow w=\dfrac{z}{2+i}=\dfrac{x+yi}{2+i}=\dfrac{\left(x+yi\right)\left(2-i\right)}{4-i^2}=\dfrac{2x+y}{5}+\dfrac{2y-x}{5}i\)
\(\left(1+3i\right)w+1+7i=\left(1+3i\right)\left(\dfrac{2x+y}{5}+\dfrac{2y-x}{5}i\right)+1+7i\)
\(=x-y+1+\left(x+y+7\right)i\)
\(\Rightarrow\left(x-y+1\right)^2+\left(x+y+7\right)^2=50\)
\(\Leftrightarrow x^2+y^2+8x+6y=0\)
Tập hợp z là đường tròn tâm \(I\left(-4;-3\right)\) bán kính \(R=5\)