Cho f(x) là hàm số chẵn, liên tục trên ℝ thỏa mãn ∫ 0 1 f x d x = 2018 và g(x) là hàm số liên tục trên ℝ thỏa mãn g x + g − x = 1 , ∀ x ∈ ℝ . Tính tích phân I = ∫ − 1 1 f x . g x d x
A. I = 2018
B. I = 1009 2
C. I = 4036
D. I = 1008
Cho hàm số f(x)= 1 + x + ( a 2 - 2 a - 2 ) a 4 - 10 a 2 + 10 - x Trong đó a là tham số. Có bao nhiêu giá trị a để f là hàm số chẵn
A. 2.
B. 1.
C. 4.
D. 3
Cho hai hàm số y=f(x) và y=g(x) là hai hàm số liên tục trên ℝ có đồ thị hàm số y=f’(x) là đường cong nét đậm, đồ thị hàm số y=g’(x) là đường cong nét mảnh như hình vẽ. Gọi ba giao điểm A, B, C của y=f’(x) và y=g’(x) trên hình vẽ lần lượt có hoành độ là a, b, c. Tìm giá trị nhỏ nhất của hàm số h(x)=f(x)-g(x) trên đoạn [a;c]
A. m i n h x a ; c = h 0
B. m i n h x a ; c = h a
C. m i n h x a ; c = h b
D. m i n h x a ; c = h c
Cho hàm số y=f(x) có đạo hàm trên R. Đường cong hình vẽ bên là đồ thị hàm số y=f '(x) (Hàm số y=f '(x) liên tục trên R. Xét hàm số g ( x ) = f ( x 2 - 2 ) . Mệnh đề nào dưới đây là sai?
A. Hàm số y=g(x) đồng biến trên khoảng (-2;-1)
B. Hàm số y=g(x) đồng biến trên khoảng 2 ; + ∞
C. Hàm số y=g(x) nghịch biến trên khoảng (-1;0)
D. Hàm số y=g(x) nghịch biến trên khoảng (0;2)
Cho hàm số ∫ - 1 1 f ( x ) d x = 4 trong đó hàm số y=f(x) là hàm số chẵn trên [-1;1). Tính ∫ - 1 1 f ( x ) 2 x + 1 d x
A. 2
B. 16
C. 8
D. 4
Cho hàm số y = f(x) liên tục trên R. Biết đồ thị hàm số y = f’(x) được cho bởi hình vẽ bên, xét hàm số y = g x = f x - x 2 2 . Hỏi trong các mệnh đề sau có bao nhiêu mệnh đề đúng?
(I) Số điểm cực tiểu của hàm số g(x) là 2.
(II) Hàm số g(x) đồng biến trên khoảng (-1;2).
(III) Giá trị nhỏ nhất của hàm số là g(-1).
(IV) Cực đại của hàm số g(x) là 0.
A. 0
B. 1
C. 2
D. 3
Cho hàm số y=f(x) là hàm lẻ, liên tục trên [-4;4], biết ∫ - 2 0 f ( - x ) dx = 2 và ∫ 1 2 f ( - 2 x ) dx = 4 . Tính I= 2 ∫ 0 4 f ( x ) dx
A. I = -10.
B. I = -6.
C. I = 6.
D. I = 10
Cho hàm số y = f(x) liên tục trên R và là hàm số chẵn, biết ∫ - 1 1 f ( x ) 1 + e x d x = 1 . Tính ∫ - 1 1 f ( x ) d x
A. 1
B. 2
C. 4
D. 1/2
Cho hàm số y=f(x) có đạo hàm liên tục trên R và có đồ thị hàm số y=f' (x) như hình vẽ bên. Xét hàm số g(x)=f(x^2-3) và các mệnh đề sau:
1. Hàm số g(x) có 3 điểm cực trị.
2. Hàm số g(x)đạt cực tiểu tại x = 0.
3. Hàm số g(x)đạt cực đại tại x = 2.
4. Hàm số g(x)đồng biến trên khoảng (-2;0).
5. Hàm số g(x)nghịch biến trên khoảng (-1;1).
Có bao nhiêu mệnh đề đúng trong các mệnh đề trên?
A. 1.
B. 4.
C. 3.
D. 2.