1. Cho tam giác ABC, góc A = 120 độ, đường phân giác AD. Đường phân giác góc ngoài tại C cắt đường thẳng AB ở K. Gọi E là giao điểm của DK và AC. Tính số đo của góc BED.
2. Cho tam giác ABC có BC = 17cm, CA = 15cm, AB = 8cm. Ba đường phân giác của tam giác cắt nhau tại O. Tính tổng các khoảng cách từ O đến ba cạnh của tam giác.
3. Cho tam giác ABC vuông cân tại A, M là trung điểm của BC. Gọi D là điểm thuộc đoạn MC, H là hình chiếu của B trên AD. Chứng minh HM là tia phân giác của góc BHD.
4. Cho tam giác ABC và điểm I là giao điểm 3 đường phân giác của tam giác. Gọi H là chân đường vuông góc kẻ từ B đến AI. Chứng minh rằng góc IBH = góc ICA.
5. Cho tam giác ABC có góc B = 50 độ, góc C = 20 độ, đường cao AH. Tia phân giác của góc AHC cắt AC tại D. Vẽ tia Ax là tia đối của tia AB. Chứng minh điểm D nằm trên tia phân giác của góc ABC.
3. Cho tam giác ABC vuông tại A, có BD là tia phân giác. Kẻ DH vuông góc với BC (E thuộc BC). Gọi F là giao điểm của BA và ED. Chứng minh :
a) BD là đường trung trực AE
b) DF=DC
c) AD<DC
4. Cho tam giác ABC vuông tại A, tia phân giác của góc ABC cắt AC tại E. Kẻ EH vuông góc với BC( H thuộc BC). GỌi K là giao điểm của AB và HE. Chứng minh rằng:
a) tam giác ABE = tam giác HBE
b) BE là đường trung trực của đoạn thẳng AH.
c) EK = EC và AE < EC
5. Cho tam giác ABC cân tại A (AB = AC), trung tuyến AM. Gọi D là một điểm nằm giữa A và M.
Chứng minh :
a) AM là tia phân giác góc A
b) tam giác ABD = tam giác ACD
c) tam giác BCD là tam giác cân
6. Cho tam giác ABC vuông tại A. Tia phân giác của góc ABC cắt AC tại D. Từ D kẻ DH vuông góc với BC tại H và DH cắt AB tại K.
a) Chứng minh : AD=DH
b) So sánh độ dài hai cạnh AD và DC
c) Chứng minh tam giác KBC là tam giác cân
3. Cho tam giác ABC vuông tại A, có BD là tia phân giác. Kẻ DH vuông góc với BC (E thuộc BC). Gọi F là giao điểm của BA và ED. Chứng minh :
a) BD là đường trung trực AE
b) DF=DC
c) AD<DC
4. Cho tam giác ABC vuông tại A, tia phân giác của góc ABC cắt AC tại E. Kẻ EH vuông góc với BC( H thuộc BC). GỌi K là giao điểm của AB và HE. Chứng minh rằng:
a) tam giác ABE = tam giác HBE
b) BE là đường trung trực của đoạn thẳng AH.
c) EK = EC và AE < EC
5. Cho tam giác ABC cân tại A (AB = AC), trung tuyến AM. Gọi D là một điểm nằm giữa A và M.
Chứng minh :
a) AM là tia phân giác góc A
b) tam giác ABD = tam giác ACD
c) tam giác BCD là tam giác cân
6. Cho tam giác ABC vuông tại A. Tia phân giác của góc ABC cắt AC tại D. Từ D kẻ DH vuông góc với BC tại H và DH cắt AB tại K.
a) Chứng minh : AD=DH
b) So sánh độ dài hai cạnh AD và DC
c) Chứng minh tam giác KBC là tam giác cân
3. Cho tam giác ABC vuông tại A, có BD là tia phân giác. Kẻ DH vuông góc với BC (E thuộc BC). Gọi F là giao điểm của BA và ED. Chứng minh :
a) BD là đường trung trực AE
b) DF=DC
c) AD<DC
4. Cho tam giác ABC vuông tại A, tia phân giác của góc ABC cắt AC tại E. Kẻ EH vuông góc với BC( H thuộc BC). GỌi K là giao điểm của AB và HE. Chứng minh rằng:
a) tam giác ABE = tam giác HBE
b) BE là đường trung trực của đoạn thẳng AH.
c) EK = EC và AE < EC
5. Cho tam giác ABC cân tại A (AB = AC), trung tuyến AM. Gọi D là một điểm nằm giữa A và M.
Chứng minh :
a) AM là tia phân giác góc A
b) tam giác ABD = tam giác ACD
c) tam giác BCD là tam giác cân
6. Cho tam giác ABC vuông tại A. Tia phân giác của góc ABC cắt AC tại D. Từ D kẻ DH vuông góc với BC tại H và DH cắt AB tại K.
a) Chứng minh : AD=DH
b) So sánh độ dài hai cạnh AD và DC
c) Chứng minh tam giác KBC là tam giác cân
Cho tam giác ABC, D là điểm nằm giữa B và C ( AD không vuông góc với BC). Gọi H, K lần lượt là chân các đường vuông góc vẽ từ B, C xuống đường AD. Chứng minh rằng: a) AB + AC > BH + CK; b) BH + CK < BC.
Cho tam giác ABC có AB=AC , AH là tia phân giác của góc BAC (H e BC)
CM rằng :
a, Tam giác AHB=tam giác AHC ; HB=HC
b, AH vuông góc vs BC
c,Gọi K là trung điểm của AC . Chứng minh rằng : Giao điểm G của AH và BK là trọng tâm của tam giác ABC
d, Giả sử AH=9cm . Tính AG (giúp vs)
Cho tam giác abc có ba góc nhọn vẽ đoạn thẳng AD vuông góc với AB và AD = AB (D và C nằm về hai phía với đối với AB). Vẽ đoạn thẳng AE vuông góc AC, AE = AC ( E và B nằm về 2 phía đối với AC). Kẻ AH vuông góc với BC tại H. Kẻ DI và EK cùng vuông góc với đường thẳng AH (I và K thuộc đường thẳng AH).
Chứng minh rằng :
a) Tam giác ABH = Tam giác DAI.
b) DI = EK
c) Gọi M là giao điểm của DE và KI. Chứng minh rằng M là trung điểm của DE và KI.
Cho tam giác ABC cân tại A(góc A< 90"), đường phân giác AD(D thuộc BC). Kẻ đường cao BE, gọi H là giao điểm của BE và AD. a. Chứng minh: tam giác ABD=tam giác ACD; b. Chứng minh: AB+BH > AC +CD; c. Gọi K là chân đường vuông góc kẻ từ C đến AB. Chứng minh: Ba đường thẳng AD, BE,CK đồng quy.
Cho tam giác đầu ABC. Điểm M nằm giữa B và C. Đường thẳng kẻ qua M và song song với AC cắt AB ở P, đường thẳng kẻ qua M và song song với AB cắt AC ở N.
a) Chứng minh tam giác BPM là tam giác đều
b) Gọi I là giao điểm của AM và PN, gọi O là trọng tâm của tam giác ABC. Chứng minh rằng tam giác OAN = tam giác OBP
c)Gọi H là 1 điểm trên đường thẳng BC sao cho HP = HN. Chứng minh rằng 3 điểm H,I,O thẳng hàng
1)Cho tam giác nhọn abc,AB<AC.Kẻ AH vuông góc với BC(H thuộc BC).Gọi M là một điểm nằm giữa A và H. a)BM<CM b)DM<DH
2)Cho tam giác ABC,có góc B>90 độ.Gọi D là một điểm trên tia đối của tia CB.Chứng minh rằng AB<AC<AD
3)Cho tam giác ABC vuông ở A.Tia phân giác của góc B cắt cạnh AC ở D.So sánh AD và DC
4)Cho tam giác ABC có AB<AC,phân giác AD.Chứng minh rằng : a)góc ADB < góc ADC b)BD<DC
Các bạn làm giúp mình nhớ bài nào cx được mình cần gấp