Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Nikolai Sidorov

Cho tam giác ABC cân tại A(góc A< 90"), đường phân giác AD(D thuộc BC). Kẻ đường cao BE, gọi H là giao điểm của BE và AD. a. Chứng minh: tam giác ABD=tam giác ACD; b. Chứng minh: AB+BH > AC +CD; c. Gọi K là chân đường vuông góc kẻ từ C đến AB. Chứng minh: Ba đường thẳng AD, BE,CK đồng quy.

Nguyễn Lê Phước Thịnh
25 tháng 4 2023 lúc 22:26

a: Xét ΔABD và ΔACD có

AB=AC

góc BAD=góc CAD

AD chung

=>ΔABD=ΔACD

c: ΔABC cân tại A

mà AD là phân giác

nen AD vuông góc BC

Xét ΔABC có

AD,BE,CK là các đường cao

=>AD,BE,CK đồng quy


Các câu hỏi tương tự
Minato Namikaze
Xem chi tiết
vu phuong linh
Xem chi tiết
Phan Quốc Việt
Xem chi tiết
Phan Quốc Việt
Xem chi tiết
Phan Quốc Việt
Xem chi tiết
Ngocanh168 Sv2
Xem chi tiết
Phương Uyên Võ Ngọc
Xem chi tiết
Nguyễn Linh Anh
Xem chi tiết
Đức Ngô Minh
Xem chi tiết