Xét sự biến thiên của hàm số y = 4 x + 5 + x − 1 trên tập xác định của nó. Áp dụng tìm số nghiệm của phương trình 4 x + 5 + x − 1 = 3
A. 1 nghiệm duy nhất
B. 2 nghiệm
C. 3 nghiệm
Vô nghiệm
Xét sự biến thiên của hàm số y = 4 x + 5 + x − 1 trên tập xác định của nó. Áp dụng tìm số nghiệm của phương trình 4 x + 5 + x − 1 = 4 x 2 + 9 + x
A. 1 nghiệm duy nhất
B. 2 nghiệm
C. 3 nghiệm
D. Vô nghiệm
Xét sự biến thiên của hàm số sau trên các khoảng đã chỉ ra
a) y=2x+3 trên R
b) y=\(\frac{x}{x^2+1}\) trên (0;1)
Xét tính đồng biến, nghịch biến của hàm số f(x) = x 2 − 4 x + 5 trên khoảng (− ∞ ; 2) và trên khoảng (2; + ∞ ). Khẳng định nào sau đây đúng?
A. Hàm số nghịch biến trên (− ∞ ; 2), đồng biến trên (2; + ∞ ).
B. Hàm số đồng biến trên (− ∞ ; 2), nghịch biến trên (2; + ∞ ).
C. Hàm số nghịch biến trên các khoảng (− ∞ ; 2) và (2; + ∞ ).
D. Hàm số đồng biến trên các khoảng (− ∞ ; 2) và (2; + ∞ ).
3, Xét sự biến thiên của h/s sau :
a, y= \(^{x^2+4x}\) trên \(\left(-\infty;2\right)\)
b, y = \(2x^2+4x+1\)trên \(\left(-\infty;1\right),\left(1;+\infty\right)\)
c, y = \(\frac{4}{x+1}\)trên \(\left(-\infty;-1\right)\)
d, y= \(\frac{3}{2-x}\)trên \(\left(2,+\infty\right)\)
Xét sự biến thiên của hàm số f(x) = x + 1 x trên khoảng (1;+ ∞ ). Khẳng định nào sau đây đúng?
A. Hàm số đồng biến trên khoảng (1; + ∞ ).
B. Hàm số nghịch biến trên khoảng (1; + ∞ ).
C. Hàm số vừa đồng biến, vừa nghịch biến trên khoảng (1; + ∞ ).
D. Hàm số không đồng biến, cũng không nghịch biến trên khoảng (1; + ∞ ).
Xét tính đồng biến và nghịch biến của hàm số y = f x = - x 2 + 4 x - 2 trên các khoảng - ∞ ; 2 và 2 ; + ∞ .
A. f x đồng biến trên khoảng - ∞ ; 2 và nghịch biến trên khoảng 2 ; + ∞
B. f x đồng biến trên cả hai khoảng - ∞ ; 2 và 2 ; + ∞
C. f x nghịch biến trên khoảng - ∞ ; 2 và đồng biến trên khoảng 2 ; + ∞
D. f x nghịch biến trên cả hai khoảng - ∞ ; 2 và 2 ; + ∞
Xét sự biến thiên của hàm số f ( x ) = 3 x trên khoảng (0; + ∞ ). Khẳng định nào sau đây đúng?
A. Hàm số đồng biến trên khoảng (0; + ∞ ).
B. Hàm số nghịch biến trên khoảng (0; + ∞ ).
C. Hàm số vừa đồng biến, vừa nghịch biến trên khoảng (0; + ∞ ).
D. Hàm số không đồng biến, cũng không nghịch biến trên khoảng (0; + ∞ ).
Cho hàm số y=f(x) = 4x^2+ 6x-5 a) Lập bảng biến thiên và vẽ đồ thị hàm số y= f(×). b) Từ bảng biến thiên, xác định khoảng đồng biến và nghịch biến và giá trị nhỏ nhất của hàm số trên c) Từ bảng biến thiên tìm giá trị lớn nhất M và giá trị nhỏ nhất m của hàm số trên đoạn [-1;2]