Xét hình chóp từ giác đều S.ABCD có tam giác SAC nội tiếp trong đường tròn có bán kính bằng 9. Gọi d là khoảng cách từ S đến mặt phẳng (ABCD) và T là diện tích tứ giác ABCD. Tính d khi biểu thức P = d . T đạt giá trị lớn nhất.
A. d = 10
B. d = 17
C. d = 15
D. d = 12
Cho chóp tứ giác S.ABCD có đáy là hình vuông cạnh 2a và tam giác SAD đều đồng thời nằm trong mặt phẳng vuông góc đáy. Tính khoảng cách d từ tâm đường tròn nội tiếp tam giác SAD đến mặt phẳng S B C theo a
A. d = 2 a 21 7
B. d = 4 a 57 57
C. d = 2 a 21 21
D. d = 4 a 21 21
Cho hình chóp S.ABCD có đáy là hình thang ABCD vuông tại A và D, có AB = 2AD = 2CD , tam giác SAD đều và nằm trong mặt phẳng vuông góc đáy. Gọi I là trung điểm AD, biết khoảng cách từ I đến mặt phẳng (SBC) bằng 1(cm). Tính diện tích S hình thang ABCD.
A. S = 10 3 c m 2
B. S = 20 3 c m 2
C. S = 200 27 c m 2
D. S = 5 3 c m 2
Cho mặt cầu S có bán kính R = 5 c m . Mặt phẳng P cắt mặt cầu S theo giao tuyến là đường tròn C có chu vi bằng 8 π . Bốn điểm A, B, C, D thay đổi sao cho A, B, C thuộc đường tròn C , điểm D thuộc S (D không thuộc đường tròn C ) và tam giác ABC là tam giác đều. Tính thể tích lớn nhất của tứ diện ABCD.
A. 32 3 c m 3
B. 60 3 c m 3
C. 20 3 c m 3
D. 96 3 c m 3
Cho mặt cầu (S) bán kính R = 5 c m . Mặt phẳng P cắt mặt cầu (S) theo giao tuyến là đường tròn (C) có chu vi bằng 8 π cm . Bốn điểm A, B, C, D thay đổi sao A, B, C cho thuộc đường tròn (C), điểm D thuộc (S) (D không thuộc đường tròn (C)) và tam giác ABC là tam giác đều. Tính thể tích lớn nhất của tứ diện ABCD.
A. 32 3 c m 3
B. 60 3 c m 3
C. 20 3 c m 3
D. 96 3 c m 3
Cho hình chóp S.ABCD có đáy hình chữ nhật, AB = a; AD = 2a. Tam giác SAB cân tại S và nằm trong mặt phẳng vuông góc với đáy. Góc giữa đường thẳng SC và mặt phẳng (ABCD) bằng 450. Gọi M là trung điểm của SD. Tính theo a khoảng cách d từ điểm M đến mặt phẳng (SAC)
A. d = a 1315 89
B. d = 2 a 1315 89
C. d = 2 a 1513 89
D. d = a 1513 89
Cho mặt cầu (S) bán kính R = 5cm. Mặt phẳng (P) cắt mặt cầu (S) theo giao tuyến là đường tròn (C) có chu vi bằng 8 π Bốn điểm A, B, C, D thay đổi sao cho A, B, C thuộc đường tròn (C), điểm D thuộc (S) (không thuộc đường tròn (C)) và tam giác ABC là tam giác đều. Tính thể tích lớn nhất của tứ diện ABCD.
A. 32 3 c m 3 .
B. 60 3 c m 3 .
C. 20 3 c m 3 .
D. 96 3 c m 3 .
Cho hình chóp S.ABCD có đáy là hình chữ nhật, A B = a , A D = 2 a . Tam giác SAB cân tại S và nằm trong mặt phẳng vuông góc với đáy. Góc giữa đường thẳng SC và mặt phẳng (ABCD) bằng 45 ° .Gọi M là trung điểm của SD. Tính theo a khoảng cách d từ điểm M đến mặt phẳng (SAC).
A. d = a 1315 89
B. d = a 1513 89
C. d = 2 a 1315 89
D. d = 2 a 1513 89
Cho hình chóp S.ABCD có đáy ABCD là hình thang vuống tại A và D có A B = 2 A D = 2 C D . Tam giác SAD đều và nằm trong mặt phẳng vuống góc với đáy. Gọi I là trung điểm AD. Biết khoảng cách từ I đến mặt phẳng (SBD) bằng 1cm Tính diện tích hình thang ABCD.
A. S = 200 27 c m 2
B. S = 10 3 c m 2
C. S = 5 3 c m 2
D. S = 19 2 c m 2