Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Nguyễn Hoàng Bảo Khang

Xét chiều biến thiên và tìm cực trị (nếu có) của các hàm số sau:

a) \(y=x+\sqrt{x}\)

b)\(y=x-\sqrt{x}\)

Trần thị Loan
11 tháng 8 2015 lúc 1:36

a) TXĐ: D = [0; + \(\infty\))

\(y'=1+\frac{1}{2\sqrt{x}}\) > 0 với mọi x thuộc D

BBT:  x y' y 0 +oo + 0 +oo

Từ BBT => Hàm số đồng biến trên D ;

y đạt cực tiểu bằng 0 tại x = 0

Hàm số không có cực đại

b) TXĐ : D = = [0; \(\infty\))

\(y'=1-\frac{1}{2\sqrt{x}}\)

\(y'=0\) <=> \(2\sqrt{x}=1\) <=> \(x=\frac{1}{4}\)

x y' y 0 +oo + 0 +oo -1/4 1/4 0 -

Từ BBT: Hàm số đồng biến trên (1/4; + \(\infty\)); nghịch biến trên (0;1/4)

Hàm số đạt cực tiểu = -1/4 tại  x = 1/4

Hàm số không có cực đại


Các câu hỏi tương tự
nguyen van nam
Xem chi tiết