Giả sử (d) đi qua điểm cố định \(M\left(x_0;y_0\right)\) . Khi đó :
\(\left(2m+3\right)x_0+\left(m+5\right)y_0+\left(4m-1\right)=0\)
\(\Leftrightarrow2mx_0+3x_0+my_0+5y_0+4m-1=0\)
\(\Leftrightarrow m\left(2x_0+y_0+4\right)+\left(3x_0+5y_0-1\right)=0\)
\(\Rightarrow\hept{\begin{cases}2x_0+y_0+4=0\\3x_0+5y_0-1=0\end{cases}}\) \(\Leftrightarrow\hept{\begin{cases}x_0=-3\\y_0=2\end{cases}}\)
Vậy (d) luôn đi qua điểm cố định \(M\left(-3;2\right)\)