\(T=\dfrac{A}{B}=\dfrac{\sqrt{x}}{1+\sqrt{x}}:\dfrac{1}{\sqrt{x}-2}=\dfrac{x-2\sqrt{x}}{\sqrt{x}+1}\\ T=\dfrac{x-1-2\sqrt{x}-2+3}{\sqrt{x}+1}\\ T=\sqrt{x}-1-\dfrac{2\sqrt{x}+2}{\sqrt{x}+1}+\dfrac{3}{\sqrt{x}+1}\\ T=\sqrt{x}+1+\dfrac{3}{\sqrt{x}+1}-2+2\ge2\sqrt{\left(\sqrt{x}+1\right)\cdot\dfrac{3}{\sqrt{x}+1}}=2\sqrt{3}\\ T_{min}=2\sqrt{3}\Leftrightarrow\sqrt{x}+1=3\Leftrightarrow x=4\left(tm\right)\)
