Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Trần Văn Huy

Xác định k để phương trình:   (k-1)x^2+2(k+1)x+k=0 

có hai nghiệm dương

Siêu Phẩm Hacker
5 tháng 1 2019 lúc 23:25

Giải thích nè : 1 ) a khác 0 vì phương trình bậc thì a phải khác 0 , nên a = 0 thì sẽ biến thành pt bậc nhất . 

                       2 ) S > 0 ( S là tổng 2 nghiệm ) ; Vì tổng của 2 số dương phải lớn hơn 0 ( vd : 1 + 2 = 3  ; 0 + 6 = 6 ) 

                      3 ) \(P\ge0\) ( P là tích của 2 nghiệm ) ; Vì tích của 2 số dương phải lớn hơn hoặc bằng 0 ( vd : 4 . 5 = 20 ; 0 . 243 = 0 ) 

                      4 ) \(\Delta'>0\) vì đenta phẩy > 0 thì phương trình mới có 2 nghiệm phân biệt \(x_1;x_2\)

Ta có : ( a = k - 1 ; b = 2(k+ 1 ) ; b' = k + 1 ; c = k ) 

Pt có 2 nghiệm dương \(\Leftrightarrow\hept{\begin{cases}a\ne0\\S>0;P\ge0\\\Delta'>0\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}a\ne0\\-\frac{b}{a}>0;\frac{c}{a}\ge0\\b^{'^2}-ac>0\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}k-1\ne0\\\frac{-2\left(k+1\right)}{k-1}>0;\frac{k}{k-1}\ge0\\\left(k+1\right)^2-\left(k-1\right).k>0\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}k\ne1\\-2k-2>0;k-1>0;k\ge0;k-1\ge0\\k^2+2k+1-k^2+k>0\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}k\ne1\\k< -1;k>1;k\ge0;k\ge1\\3k+1>0\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}k\ne1\\k< -1;k>1\\k>-\frac{1}{3}\end{cases}}\) ( Vì k > 1 và \(k\ge0\) nên ta chỉ lấy k > 1 thôi ; và loại bỏ \(k\ge1\) vì k phải khác 1  )

\(\Leftrightarrow\hept{\begin{cases}k\ne1\\k< -1\\k>1\end{cases}}\) ( loại bỏ k > -1/3 vì ta đã có k > 1 rồi nên không cần phải có k > -1/3 nữa ) 

Ta có : k < -1 có nghĩa là  \(\left(-\infty;-1\right)\) trừ vô cùng đến trừ 1 

          : k > 1 có nghĩa là   \(\left(1;+\infty\right)\)  1 đến cộng vô cùng 

Lấy 2 tập hợp này giao lại với nhau :

-oo +oo -1 1

Vậy đây là một tập hợp rỗng \(\left(\varnothing\right)\) 

Vậy nên k không thể xác định được . 

Học tốt ! 

Trần Văn Huy
6 tháng 1 2019 lúc 9:55

camon!


Các câu hỏi tương tự
Phạm Trần Bảo Trâm
Xem chi tiết
Đỗ Đức Kiên
Xem chi tiết
Trâm Anh
Xem chi tiết
sen trần duyên
Xem chi tiết
....
Xem chi tiết
....
Xem chi tiết
lê thị thu hà
Xem chi tiết
OoO Kún Chảnh OoO
Xem chi tiết
Trâm Anh
Xem chi tiết