Giải thích nè : 1 ) a khác 0 vì phương trình bậc thì a phải khác 0 , nên a = 0 thì sẽ biến thành pt bậc nhất .
2 ) S > 0 ( S là tổng 2 nghiệm ) ; Vì tổng của 2 số dương phải lớn hơn 0 ( vd : 1 + 2 = 3 ; 0 + 6 = 6 )
3 ) \(P\ge0\) ( P là tích của 2 nghiệm ) ; Vì tích của 2 số dương phải lớn hơn hoặc bằng 0 ( vd : 4 . 5 = 20 ; 0 . 243 = 0 )
4 ) \(\Delta'>0\) vì đenta phẩy > 0 thì phương trình mới có 2 nghiệm phân biệt \(x_1;x_2\)
Ta có : ( a = k - 1 ; b = 2(k+ 1 ) ; b' = k + 1 ; c = k )
Pt có 2 nghiệm dương \(\Leftrightarrow\hept{\begin{cases}a\ne0\\S>0;P\ge0\\\Delta'>0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}a\ne0\\-\frac{b}{a}>0;\frac{c}{a}\ge0\\b^{'^2}-ac>0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}k-1\ne0\\\frac{-2\left(k+1\right)}{k-1}>0;\frac{k}{k-1}\ge0\\\left(k+1\right)^2-\left(k-1\right).k>0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}k\ne1\\-2k-2>0;k-1>0;k\ge0;k-1\ge0\\k^2+2k+1-k^2+k>0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}k\ne1\\k< -1;k>1;k\ge0;k\ge1\\3k+1>0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}k\ne1\\k< -1;k>1\\k>-\frac{1}{3}\end{cases}}\) ( Vì k > 1 và \(k\ge0\) nên ta chỉ lấy k > 1 thôi ; và loại bỏ \(k\ge1\) vì k phải khác 1 )
\(\Leftrightarrow\hept{\begin{cases}k\ne1\\k< -1\\k>1\end{cases}}\) ( loại bỏ k > -1/3 vì ta đã có k > 1 rồi nên không cần phải có k > -1/3 nữa )
Ta có : k < -1 có nghĩa là \(\left(-\infty;-1\right)\) trừ vô cùng đến trừ 1
: k > 1 có nghĩa là \(\left(1;+\infty\right)\) 1 đến cộng vô cùng
Lấy 2 tập hợp này giao lại với nhau :
Vậy đây là một tập hợp rỗng \(\left(\varnothing\right)\)
Vậy nên k không thể xác định được .
Học tốt !