\(\text{Δ}=\left(2k\right)^2-4\cdot\left(k^2-k\right)\)
\(=4k^2-4k^2+4k\)
=4k
Để phương trình có nghiệm thì \(4k\ge0\)
hay \(k\ge0\)
\(\text{Δ}=\left(2k\right)^2-4\cdot\left(k^2-k\right)\)
\(=4k^2-4k^2+4k\)
=4k
Để phương trình có nghiệm thì \(4k\ge0\)
hay \(k\ge0\)
Tìm m để phương trình sau có nghiệm kép.
a \(x^2-\left(k+1\right)x+2+k=0\)
b \(x^2+2\left(k-1\right)x+k+9=0\)
tìm k để phương trình x4-2kx2+k2-3=0 có đúng 3 nghiệm phân biệt
Gọi \(x_1;x_2\)là hai nghiệm của phương trình : \(x^2-2kx-\left(k-1\right)\left(k-3\right)=0\).Khi đó \(\frac{1}{4}\left(x_1+x_2\right)^2+x_1.x_2-2\left(x_1-x_2\right)=....\)
Gọi \(x_1,x_2\)là hai nghiệm của phương trình \(x^2-2kx-\left(k-1\right)\left(k-3\right)=0\)
Khi đó giá trị của \(\frac{1}{4}\left(x_1+x_2\right)^2+x_1.x_2-2\left(x_1+x_2\right)\)
Bài 1: Cho phương trình \(^{x^2-2\left(k-1\right)x+2k-5=0}\)
a) Giải phương trình với k = 1
b) Tìm k để phương trình có 2 nghiệm x1, x2 thỏa mãn hệ thức \(\left|x_1\right|-\left|x_2\right|=\sqrt{14}\)
Bài 2: Cho phương trình \(x^2-5x+m=0\)(m là tham số)
a) Giải phương trình với m = 4
b) Tìm m để phương trình có 2 nghiệm phân biệt x1, x2 thỏa mãn \(\left|x_1-x_2\right|=3\)
Chứng minh rằng nếu phương trình \(x^2+2mx+n=0\) có nghiệm thì phương trình \(x^2+2\left(k+\frac{1}{k}\right)mx+n\left(k+\frac{1}{k}\right)^2=0\)cũng có nghiệm.
tìm giá trị của k để phương trình ẩn x có nghiệm âm
\(\frac{k\left(x+2\right)-3\left(k-1\right)}{x+1}\) = 1
Cho phương trình: (k-1)x^2 -2kx +k-4 = 0. Cọi x1, x2 là các nghiệm của phương trình. Lập 1 hệ thức liên hệ giữa x1, x2 không phụ thuộc vào k.
tìm giá trị của k để pt sau có 3 nghiệm pb :
\(\left(x-3\right)\left[x^2+\left(k-1\right)x+k^2\right]=0\)
tìm giá trị của k để pt sau có 2 nghiệm pb và cùng âm :
\((x-1)(x^2+kx+k-1)=0\)