Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Pham Trong Bach

Xác định a và b để đồ thị của hàm số y = ax + b đi qua hai điểm A và B trong mỗi trường hợp sau:

a) A(2; -2) và B(-1; 3) ;     b) A(-4; -2) và B(2; 1)

c) A(3; -1) và B(-3; 2) ;     d) A(√3; 2) và B(0; 2)

Cao Minh Tâm
13 tháng 3 2017 lúc 12:46

a) Đồ thị hàm số y = ax + b đi qua A(2; -2) ⇔ 2.a + b = -2 (1)

Đồ thị hàm số y = ax + b đi qua B(-1 ; 3) ⇔ a.(-1) + b = 3 (2)

Từ (1) và (2) ta có hệ phương trình :

Giải bài 26 trang 19 SGK Toán 9 Tập 2 | Giải toán lớp 9

b) Đồ thị hàm số y = ax + b đi qua A(-4; -2) ⇔ a.(-4) + b = -2

Đồ thị hàm số y = ax + b đi qua B(2 ; 1) ⇔ a.2 + b = 1

Ta có hệ phương trình :

Giải bài 26 trang 19 SGK Toán 9 Tập 2 | Giải toán lớp 9

c) Đồ thị hàm số y = ax + b đi qua A(3 ; -1) ⇔ a.3 + b = -1

Đồ thị hàm số y = ax + b đi qua B(-3 ; 2) ⇔ a.(-3) + b = 2.

Ta có hệ phương trình :

Giải bài 26 trang 19 SGK Toán 9 Tập 2 | Giải toán lớp 9

d) Đồ thị hàm số y = ax + b đi qua A(√3 ; 2) ⇔ a.√3 + b = 2 (*)

Đồ thị hàm số y = ax + b đi qua B(0; 2) ⇔ a.0 + b = 2 ⇔ b = 2.

Thay b = 2 vào (*) ta được a.√3 + 2 = 2 ⇔ a.√3 = 0 ⇔ a = 0.

Vậy a = 0 và b = 2.

Kiến thức áp dụng

+ Đồ thị hàm số y = f(x) đi qua điểm A(x0; y0) ⇔ y0 = f(x0).

+ Giải hệ phương trình bằng phương pháp cộng đại số

   1) Nhân hai vế của phương trình với mỗi hệ số thích hợp (nếu cần) sao cho hệ số của một trong hai ẩn bằng nhau hoặc đối nhau.

   2) Áp dụng quy tắc cộng đại số để được hệ phương trình mới, trong đó có một phương trình mà hệ số của một trong hai ẩn bằng 0 (tức là phương trình một ẩn).

   3) Giải phương trình một ẩn vừa thu được rồi suy ra nghiệm của hệ đã cho.


Các câu hỏi tương tự
Pham Trong Bach
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Trang Nguyễn
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Pham Trong Bach
Xem chi tiết
phùng hải nam
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Pham Trong Bach
Xem chi tiết