Đồ thị hàm số y = ax + b đi qua A(√3 ; 2) ⇔ a.√3 + b = 2 (*)
Đồ thị hàm số y = ax + b đi qua B(0; 2) ⇔ a.0 + b = 2 ⇔ b = 2.
Thay b = 2 vào (*) ta được a.√3 + 2 = 2 ⇔ a.√3 = 0 ⇔ a = 0.
Vậy a = 0 và b = 2.
Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6
Đồ thị hàm số y = ax + b đi qua A(√3 ; 2) ⇔ a.√3 + b = 2 (*)
Đồ thị hàm số y = ax + b đi qua B(0; 2) ⇔ a.0 + b = 2 ⇔ b = 2.
Thay b = 2 vào (*) ta được a.√3 + 2 = 2 ⇔ a.√3 = 0 ⇔ a = 0.
Vậy a = 0 và b = 2.
Xác định a và b để đồ thị của hàm số y = ax + b đi qua hai điểm A và B trong mỗi trường hợp sau: A(2; -2) và B(-1; 3)
Xác định a và b để đồ thị của hàm số y = ax + b đi qua hai điểm A và B trong mỗi trường hợp sau: A(3; -1) và B(-3; 2)
Xác định a và b để đồ thị của hàm số y = ax + b đi qua hai điểm A và B trong mỗi trường hợp sau: A(-4; -2) và B(2; 1)
Xác định a và b để đồ thị của hàm số y = ax + b đi qua hai điểm A và B trong mỗi trường hợp sau:
a) A(2; -2) và B(-1; 3) ; b) A(-4; -2) và B(2; 1)
c) A(3; -1) và B(-3; 2) ; d) A(√3; 2) và B(0; 2)
Xác định hàm số bậc nhất y = ax + b trong mỗi trường hợp sau:
a = 3 và đồ thị của hàm số đi qua điểm A(2; 2)
Xác định hàm số bậc nhất y = ax + b trong mỗi trường hợp sau:
a) a = 2 và đồ thị của hàm số cắt trục hoành tại điểm có hoành độ bằng 1,5.
b) a = 3 và đồ thị của hàm số đi qua điểm A(2; 2)
c) Đồ thị của hàm số song song với đường thẳng y = √3 x và đi qua điểm B(1; √3 + 5 ).
xác định hàm số bậc nhất y=ax+b trong mỗi trường hợp sau:
a/ a=2 và đồ thị hàm số cắt trục hoành tại điểm có hoành độ bằng 1,5
b/a=3 và đồ thị của hàm số qua điểm A(2;2)
c/Đồ thị hàm số song song với đường thẳng y=căn 3 và đi qua điểm B(1;căn 3+5)
1) xác định đồ thị hàm số bậc nhất \(y=ax+b\) trong mỗi trường hợp sau:
a) đồ thị hàm số đi qua A(-1; 2), B(2; -3)
b) đồ thị hàm số có hệ số góc là 2 và cắt trục tung tại điểm có tung độ là 2
c) đồ thị hàm số tạo với trục hoành 1 góc \(60^0\) và đi qua điểm B(1; -3)
giúp mk vs ah mk cần gấp
xác định hàm số bậc nhất y=ax+b ( a khác 0) trong các trường hợp sau:
a, đồ thị của hàm số là đường thẳng đi qua gốc tọa độ và có hệ số gốc bằng -2
b, đồ thị của hàm số là đường thẳng cắt trục tung tại điểm có tung độ bằng -3 và đi qua điểm B(-2;1)