Xác định các hệ số a,b để \(f\left(x\right)=x^4+3x^3-x^2+\left(2a-b\right)x+3b+a\) chia hết cho \(g\left(x\right)=x^2+3x-1\)
xét đa thức :
a, \(f\left(x\right)=x^2+\left(a+b\right)x+ab\)và \(g\left(x\right)=x^2+5x+6\). xác định a ,b để f(x) = g(x)
b, \(f\left(x\right)=ãx^2+bx+c\)và \(g\left(x\right)=x\left(x+2\right)-\left(x+2\right)\). Xác định a , b để f(x)=g(x)
cho đa thức \(f\left(x\right)=ax^2+bx+c\)
a) xác định hệ số a,b,c biết \(f\left(0\right)=1;f\left(1\right)=0;f\left(-1\right)=10\)
b) tìm nghiệm của đa thức vừa xác định
Cho 2 đơn thức
\(A\left(x\right)=-2x^3+11x^2-5x-\dfrac{1}{5}\)
\(B\left(x\right)=2x^3-3x^2-7x+\dfrac{1}{5}\)
a) Tính A(x) + B(x)
b) Tìm đa thức C(x) biết C(x) +B(x) = A(x)
1 phan tich
A=(x+1)(x+2)(x+3)(x+4)-24
B=\(\left(x^2+3x+2\right)\left(x^2+7x+120-24\right)\)
C=\(\left(x-2\right)\left(x-4\right)\left(x+6\right)\left(x-8\right)+16\)
D=\(\left(x^3+3x+2\right)\left(x^2+7x+12\right)-11\)
M = \(\left(x-a\right)\left(x-b\right)+\left(x-b\right)\left(x-c\right)+\left(x-c\right)\left(x-a\right)+x^2\)
Tính M theo a, b, c biết rằng x = \(\dfrac{1}{2}a+\dfrac{1}{2}b+\dfrac{1}{2}c\)
Tìm x, biết:
a. \(\left|3x-1\right|+\left|x-2\right|-\left|x+3\right|=10\)
b. \(\left|x.\left(x^2+3\right)\right|-7x=0\)
1. Xác định các đa thức sau:
a) Nhị thức bậc nhất f(x) = ax + b với a≠0, biết f(-1) = 1 và f(1) = -1
b) Tam thức bậc hai \(g\left(x\right)=ax^2+bx+c\) với a≠0, biết g(-2) = 9, g(-1) = 2, g(1)=6
2.a) Đa thức f(x) = ax + b (a≠0). Biết f(0) = 0. Chứng minh f(x) = -f(-x) với mọi x
b) Đa thức f(x) = ax2 + bx + c (a≠0). Biết f(1) = f(-1). Chứng minh f(x) = f(-x) với mọi x.
3. Tìm tổng các hệ số của đa thức sau khi phá ngoặc và sắp xếp, biết:
a) Đa thức \(f\left(x\right)=\left(2x^3-3x^2+2x+1\right)^{10}\)
b) Đa thức \(g\left(x\right)=\left(3x^2-11x+9\right)^{2011}.\left(5x^4+4x^3+3x^2-12x-1\right)^{2012}\)
chứng minh rằng các biểu thức sau không phụ thuộc vào x:
a. \(A=\left(3x+7\right)\left(2x+3\right)-\left(3x-5\right)\left(2x+11\right)\)
b. \(B=\left(x^2-2\right)\left(x^2+x-1\right)-x\left(x^3+x^2-3x-2\right)\)
c. \(C=x\left(x^3+x^2-3x-2\right)-\left(x^2-2\right)\left(x^2+x-1\right)\)