Đề yêu cầu làm gì vậy em?
x^8+x^7+1
=x^8+x^7+x^6-x^6+1
=x^6(x^2+x+1)-(x^3-1)(x^3+1)
=x^6(x^2+x+1)-(x^3+1)(x-1)(x^2+x+1)
=(x^2+x+1)[x^6-(x^3+1)(x-1)]
=(x^2+x+1)(x^6-x^4+x^3-x+1]
b: x^8+x^4+1
=x^8+2x^4+1-x^4
=(x^4+1)^2-x^4
=(x^4+x^2+1)(x^4-x^2+1)
=(x^4-x^2+1)(x^4+2x^2+1-x^2)
=(x^4-x^2+1)(x^2+1-x)(x^2+1+x)
c: x^5+x+1
=x^5-x^2+x^2+x+1
=x^2(x^3-1)+(x^2+x+1)
=x^2(x-1)(x^2+x+1)+(x^2+x+1)
=(x^2+x+1)(x^3-x^2+1)
d: x^3+x^2+4
=x^3+2x^2-x^2+4
=x^2(x+2)-(x-2)(x+2)
=(x+2)(x^2-x+2)