\(x^8-256\)
\(=\left(x^4\right)^2-16^2\)
Ta có:\(\left(a+b\right)\left(a-b\right)=a\left(a+b\right)-b\left(a+b\right)\)
\(=a^2+ab-ba-b^2\)
\(=a^2-b^2\)
Vậy \(a^2-b^2=\left(a+b\right)\left(a-b\right)\)
Áp dụng:\(\left(x^4\right)^2-16^2=\left(x^4+16\right)\left(x^4-16\right)\)
\(=\left(x^4+16\right)\left[\left(x^2\right)^2-4^2\right]\)
\(=\left(x^4+16\right)\left(x^2+4\right)\left(x^2-4\right)\)
\(=\left(x^4+16\right)\left(x^2+4\right)\left(x+2\right)\left(x-2\right)\)
= 4x8 - 3x8 - \(\sqrt{256}\)
= 4x8 - 3x8 - 16
= (4x8 - 16) - 3x8
= 4(x8 - 4) - 3x8
= bó tay!!
6785685685876876876836546457457676578568584676
\(x^8-256\)
\(=x^8-2^8\)
\(=\left(x-2\right)\left(x^7+2x^6+4x^5+8x^4+16x^3+32x^2+64x+128\right)\)