\(x^2 + 10x + 25 + 4x^2 - 12x + 9 - 5(x^2 - 4) = 0\\ ⇔ -2x + 54 = 0\\ ⇔ x = 27\)
Ta có: \(\left(x+5\right)^2+\left(2x-3\right)^2-5\left(x-2\right)\left(x+2\right)=0\)
\(\Leftrightarrow x^2+10x+25+4x^2-12x+9-5\left(x^2-4\right)=0\)
\(\Leftrightarrow5x^2-2x+34-5x^2+20=0\)
\(\Leftrightarrow-2x+54=0\)
hay x=27
Vậy: S={27}