\(x\left(3-2x\right)+5=2x^2-3x+2\)
\(\Leftrightarrow3x-2x^2+5-2x^2+3x-2=0\)
\(\Leftrightarrow-4x^2+6x+3=0\)
\(\Delta=6^2-4.3.\left(-4\right)=36+48=84>0\)
\(\rightarrow\left[{}\begin{matrix}x=\dfrac{-6+\sqrt{84}}{-8}=\dfrac{3-\sqrt[]{21}}{4}\\x=\dfrac{-6-\sqrt{72}}{-8}=\dfrac{3+\sqrt{21}}{4}\end{matrix}\right.\)
Vậy \(S=\left\{\dfrac{3\pm\sqrt{21}}{4}\right\}\)