\(x^2-x+3\)
\(=x^2-x+\dfrac{1}{4}+\dfrac{11}{4}\)
\(=\left(x-\dfrac{1}{2}\right)^2+\dfrac{11}{4}>=\dfrac{11}{4}>0\)(luôn đúng)
\(x^2-x+3\)
\(=x^2-x+\dfrac{1}{4}+\dfrac{11}{4}\)
\(=\left(x-\dfrac{1}{2}\right)^2+\dfrac{11}{4}>=\dfrac{11}{4}>0\)(luôn đúng)
giải pt
a 3x(x-1)+2(x-1)=0
b x^2-1-(x+5)(2-x)=0
c 2x^3 +4x^2-x^2+2=0
d x(2x-3)-4x+6=0
e x^3-1=x(x-1)
f (2x-5)^2 -x^2-4x-4=0
h (x-2)(x^2+3x-2)-x^3+8=0
Giải các phương trình sau:
a \(x^2-11=0\)
b \(x^2-12x+52=0\)
c \(x^2-3x-28=0\)
d \(x^2-11x+38=0\)
e \(6x^2+71x+175=0\)
f \(x^2-\left(\sqrt{2}+\sqrt{8}\right)x+4=0\)
g\(\left(1+\sqrt{3}\right)x^2-\left(2\sqrt{3}+1\right)x+\sqrt{3}=0\)
giải pt
a, 2x^3++3x^2-8x-12=0
b, x^3-4x^2-x+4=0
c,x^3-x^2-x-2=0
d,x^4-3x^3+3x^2-x=0
e,(x+1)(x^2-2x+3)=x^3+1
g,x^3+3x^2+3x+1=4x+4
Giải các phương trình sau:
a \(\left(X^2+2x\right)^2-3\left(x^2+2x\right)+2=0\)
b \(\left(x^2+x\right)\left(x^2+x+1\right)-6=0\)
c \(x^4-4x^3+x+3=0\)
d \(x^4-2x^3+x=2\)
Giải pT
1) x^3-5x^2+3x+1=0
2) x^4-3x^3+4x^2-3x+1=0
3) 3x^3+2x^2-4x-1=0
4) x^4+x^3-13x^2-x+10=0
5) x^4-2x^3-13x^2+14x+24=0
6) 3x^3+x^2-5x-3=0
1) x^8-97x^3+1296=0
2)(x^2 +x )(x^2+x+1)=0
3) (x^4+x^2+1)^2 -38(x^4+x^2+1)+105=0
Bài 4 : Tìm x biết
a)x( x-2 ) + x - 2 = 0
a) 5x( x-3 ) - x+3 = 0
b) (3x + 5)(4 – 3x) = 0
c) 3x(x – 7) – 2(x – 7) = 0
Đạo hàm y 0 = −3x 2 + 6x + m − 1. Hàm số đã cho đồng biến trên khoảng (0; 3) khi và chỉ khi y 0 > 0, ∀x ∈ (0; 3). Hay −3x 2 + 6x + m − 1 > 0, ∀x ∈ (0; 3) ⇔ m > 3x 2 − 6x + 1, ∀x ∈ (0; 3) (∗). Xét hàm số f(x) = 3x 2 − 6x + 1 trên đoạn [0; 3] có f 0 (x) = 6x − 6; f 0 (x) = 0 ⇔ x = 1. Khi đó f(0) = 1, f(3) = 10, f(1) = −2, suy ra max [0;3] f(x) = f(3) = 10. Do đó (∗) ⇔ m > max [0;3] f(x) ⇔ m > 10. Vậy với m > 10 thì hàm số đã cho đồng biến trên khoảng (0; 3).
1) x-\(7\sqrt{x-3}\) -9=0 2) \(\sqrt{x+3}\) =5-\(\sqrt{x-2}\) 3) \(\sqrt{x-4\sqrt{x+4}}\) =3 4) \(\sqrt{8-\dfrac{2}{3}x}-5\sqrt{2}\) =0 5) \(\sqrt{x^2-4x+4}\) =2-x
Giải các phương trình sau:
a \(x^2+3x+4=0\)
b \(3x^3-x+2=0\)
c \(x^4-4x^3-9x^2+8x+4=0\)
d \(x^4+4x^3+6x^2-5x-8=0\)