\(x^2-\dfrac{1}{5}.\dfrac{5}{4}=\dfrac{3}{4}\\ \Rightarrow x^2-\dfrac{1}{4}=\dfrac{3}{4}\\ \Rightarrow x^2=1\\ \Rightarrow\left[{}\begin{matrix}x=-1\\x=1\end{matrix}\right.\)
\(\left(\dfrac{1}{2}-x\right)^2=\dfrac{1}{9}\\ \Rightarrow\left[{}\begin{matrix}\dfrac{1}{2}-x=-\dfrac{1}{3}\\\dfrac{1}{2}-x=\dfrac{1}{3}\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}x=\dfrac{5}{6}\\x=\dfrac{1}{6}\end{matrix}\right.\)
\(x^2-5=5\\ \Rightarrow x^2=10\\ \Rightarrow x=\pm\sqrt{10}\)
\(3x^2-1=14\\ \Rightarrow3x^2=15\\ \Rightarrow x^2=5\\ \Rightarrow x=\pm\sqrt{5}\)
1. x2 - \(\dfrac{1}{5}.\dfrac{5}{4}=\dfrac{3}{4}\)
<=> x2 - \(\dfrac{1}{4}\) = \(\dfrac{3}{4}\)
<=> x2 = \(\dfrac{3}{4}+\dfrac{1}{4}\)
<=> x2 = 1
<=> x = \(\pm\)1
2. \(\left(\dfrac{1}{2}-x\right)^2=\dfrac{1}{9}\)
<=> \(\dfrac{1}{4}-x+x^2=\dfrac{1}{9}\)
<=> x2 - x = \(\dfrac{1}{9}-\dfrac{1}{4}\)
<=> x2 - x = \(\dfrac{-5}{36}\)
<=> x2 - x - \(\dfrac{-5}{36}\) = 0
Đoạn này dài, mik giải ngoài rồi viết vào nha:
<=> x = \(\dfrac{5}{6}\)
3. x2 - 5 = 5
<=> x2 = 10
<=> x = \(\sqrt{10}\)
4. 3x2 - 1 = 14
<=> 3x2 = 15
<=> x2 = 15 : 3
<=> x2 = 5
<=> x = \(\sqrt{5}\)