\(=\dfrac{\left(x-3\right)\left(x-1\right)}{x-3}=x-1\)
\(\left(x^2-x-3x+3\right):\left(x-3\right)=\left[x\left(x-1\right)-3\left(x-1\right)\right]:\left(x-3\right)=\dfrac{\left(x-1\right)\left(x-3\right)}{x-3}=x-1\)
\(=\dfrac{\left(x-3\right)\left(x-1\right)}{x-3}=x-1\)
\(\left(x^2-x-3x+3\right):\left(x-3\right)=\left[x\left(x-1\right)-3\left(x-1\right)\right]:\left(x-3\right)=\dfrac{\left(x-1\right)\left(x-3\right)}{x-3}=x-1\)
4x2 + 4x + 1 =x2
(x+2) (3-4x)=x2+4x+6
x+3/x+1 + x-2/x =2
Giải các phương trình sau:
g/ x(x + 3)(x – 3) – (x + 2)(x2 – 2x + 4) = 0
h/ (3x – 1)(x2 + 2) = (3x – 1)(7x – 10)
i/ (x + 2)(3 – 4x) = x2 + 4x + 4
k/ x(2x – 7) – 4x + 14 = 0
m/ x2 + 6x – 16 = 0
n/ 2x2 + 5x – 3 = 0
a. (2x - 5)2 + (4x - 10)(2 + x) + x2 + 4x + 4 = 0
b. ( 3 – x2 + 5x )( x2 – 5x + 3) = 9
4x(x -1) - 3(x2 - 5) - x2 = (x - 3) - (x-4)
Tim x, biết:
Câu 1. x2 + 4x + 4 = 9
Câu 2. 4x2 + 4x + 1 = 4
Câu 3. x2 + 2x - 8 =0
Câu 4. x2 + 4x - 12 = 0
(x+4)(x2-4x+16)
(x-3y)(x2+3xy+9y2)
(x2-\(\dfrac{1}{3}\))(x4+\(\dfrac{1}{3}\)x2+\(\dfrac{1}{9}\))
Tìm x :
b )(x-1) . ( x2 +x +1) -x.(x-3) . (x+3 )=8
c)( X2 + 2 ) . (x-4 ) - ( X+2 ). ( x2 +4x +4=-16
a) x(4x+3y)−(y−2x)2
b) (3+x)(x−3)−(x−1)(x2−3)
c)−2(x−3)2+(x+1)(5x−1)
d) (2x+1)(4x2−2x+1)−3x2(x−2)
e) (3x2+19x+20):(3x+4)
f) (7x2+x3+12x−6):(x2+4x−3)
Tìm giá trị nhỏ nhất
a) x2 + x + 1
b)4x2+4x-5
c)(x-3)(x+5) + 4
d)x2 - 4x + y2 - 8y + 6
Tính:
a,2x(x - 1) - 3(x2 + 4x) + x(x + 2)
b,(2x - 3) (3x + 5) - (x - 1) (6x + 2) + 3 - 5x
c,(x - y)(x2 + xy + y2) - (x + y)(x2- y2)