=>(x-3)(x-1)>=0
=>x>=3 hoặc x<=1
=>(x-3)(x-1)>=0
=>x>=3 hoặc x<=1
Tim x, biết:
Câu 1. x2 + 4x + 4 = 9
Câu 2. 4x2 + 4x + 1 = 4
Câu 3. x2 + 2x - 8 =0
Câu 4. x2 + 4x - 12 = 0
a, x2 - 4x = 0 b, (2x + 1)2 - 4x (x + 3) = 9
c, x2 -12x = -36
Chứng minh rằng
a) – x2 + 4x – 5 < 0 với mọi x
b) x4 + 3x2 + 3 > 0 với mọi x
c) (x2 + 2x + 3)(x2 + 2x + 4) + 3 > 0 với mọi x
Giải các phương trình sau:
g/ x(x + 3)(x – 3) – (x + 2)(x2 – 2x + 4) = 0
h/ (3x – 1)(x2 + 2) = (3x – 1)(7x – 10)
i/ (x + 2)(3 – 4x) = x2 + 4x + 4
k/ x(2x – 7) – 4x + 14 = 0
m/ x2 + 6x – 16 = 0
n/ 2x2 + 5x – 3 = 0
x2-4x+3 ≥0
Tìm x:
a)x2-4x=3.(x-4)
b)x2-5x-24=0
Giải các phương trình tích sau:
1.a)(3x – 2)(4x + 5) = 0 b) (2,3x – 6,9)(0,1x + 2) = 0
c)(4x + 2)(x2 + 1) = 0 d) (2x + 7)(x – 5)(5x + 1) = 0
2. a)(3x + 2)(x2 – 1) = (9x2 – 4)(x + 1)
b)x(x + 3)(x – 3) – (x + 2)(x2 – 2x + 4) = 0
c)2x(x – 3) + 5(x – 3) = 0 d)(3x – 1)(x2 + 2) = (3x – 1)(7x – 10)
3.a)(2x – 5)2 – (x + 2)2 = 0 b)(3x2 + 10x – 8)2 = (5x2 – 2x + 10)2
c)(x2 – 2x + 1) – 4 = 0 d)4x2 + 4x + 1 = x2
4. a) 3x2 + 2x – 1 = 0 b) x2 – 5x + 6 = 0
c) x2 – 3x + 2 = 0 d) 2x2 – 6x + 1 = 0
e) 4x2 – 12x + 5 = 0 f) 2x2 + 5x + 3 = 0
e, x2-4+(x-2)2 = 0
f, x3+1=x(x+1)
g, x2(x-3)+12-4x = 0
h, (2x-1)2-(x+3)2 = 0
Giải: x2 - 4x + 3 \(\ge\) 0.
Giải các phương trình sau:
a) 2 x + 4 x − 3 = 0 ; b) x + 2 2 4 x + 6 = 0 ;
c) x 2 − 16 7 − x = 0 ; d) 4 x + 3 3 x + 11 4 − x − 7 12 = 0 .