\(=x^2-xy+3xy-3y^2=\left(x-y\right)\left(x+3y\right)\)
\(=x^2-xy+3xy-3y^2=\left(x-y\right)\left(x+3y\right)\)
37. Phân tích đa thưc 2x^3y - 2xy^3 - 4xy^2 - 2xy thành nhân tử ta đc:
A. 2xy (x-y-1) (x+y-1)
B. 16x - 54y^3 = 2(2x-3y) (4x^2 + 6xy + 9y^2)
C. 16x^3 - 54y = 2(2x - 3y) (2x + 3y) ^2
D. 16x^4 (x-y) - x + y = (4x^2 -1) (4x^2 + 1) (x-y)
Tìm x,y,z biết: a) x^2+y^2-4x+4y+8=0 b) 5x^2-4xy+y^2=0 c) x^2+2y^2+z^2-2xy-2y-4z+5=0 d) 3x^2+3y^2+3xy-3x+3y+3=0 e) 2x^2+y^2+2z^2-2xy-2xz+2yz-2z-2z-2x+2=0
Tìm x,y biết:
a,2x^2+y^2+2xy+10x+25=0
b,x^2+3y^2+2xy-2y+1=0
c,x^2+2y^2+2xy-2x+2=0
-y^2+2xy-x^2+3x-3y
cho P = 3x^2 +2xy -2y^2; Q = 3y^2-2xy-x^2.Chứng tỏ P,Q không nhận giá trị âm với mọi x,y
x^2-3y^2+2xy=1
phân tích thành nhân tử
b. x^2+2xy+y^2-16
c. 3x^2+5x-3xy-5y
d. 4x^2-6x^3y-2x^2+8x
e. x^2-4-2xy+y^2
k. x^2-y^2-z^2-2yz
m. 6xy+5x-5y-3x^2-3y^2
Cho B=(x-3y)(x+3y) + (4y-1)^2 - 2(x+3y) Tìm giá trị nhỏ nhất của B
Cho 2x^2+y^2 -2xy-6x+9=0 . Tính giá trị của C=3𝑥−1/2𝑦
-y^2+2xy-x^2+3x-3y