\(x^2-10x+24=0\)
⇔\(x^2-4x-6x+24=0\)
⇔\(\left(x^2-4x\right)-\left(6x-24\right)=0\)
⇔\(x\left(x-4\right)-6\left(x-4\right)=0\)
⇔\(\left(x-4\right)\left(x-6\right)=0\)
⇔\(x-4=0\) hay \(x-6=0\)
⇔\(x=4\) hay \(x=6\)
\(\Leftrightarrow x^2-4x-6x+24=0\\ \Leftrightarrow\left(x-4\right)\left(x-6\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=4\\x=6\end{matrix}\right.\)