\(x^2-10x+24=0\\ \Leftrightarrow x^2-10x+25-1=0\\ \Leftrightarrow\left(x-5\right)^2-1=0\\ \Leftrightarrow\left(x-6\right)\left(x-4\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=6\\x=4\end{matrix}\right.\\ VậyS=\left\{6;4\right\}\)
\(x^2-10x+24=0\)
\(\Leftrightarrow x^2-10x+25-1=0\)
\(\Leftrightarrow\left(x-5\right)^2-1=0\)
\(\Leftrightarrow\left(x-5-1\right)\left(x-5+1\right)=0\)
\(\Leftrightarrow\left(x-6\right)\left(x-4\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=6\\x=4\end{matrix}\right.\)
Vậy: \(S\in\left\{6;4\right\}\)