`(x+1)(x^2-x+1)-x(x^2-2)=19`
`<=>x^3+1-x^3+2x=19`
`<=>2x+1=19`
`<=>2x=18`
`<=>x=9`
Vậy \(S=\left\{9\right\}\)
\(\Leftrightarrow x^3+1-x^3+2x=19\)
=>2x=18
hay x=9
\(\left(x+1\right)\left(x^2-x+1\right)-x.\left(x^2-2\right)=19\)
\(\Leftrightarrow x^3+1-x.\left(x^2-2\right)=19\)
\(\Leftrightarrow x^3+1-x^3+2x=19\)
\(\Leftrightarrow1+2x=19\)
\(\Leftrightarrow2x=19-1\)
\(\Leftrightarrow2x=18\)
\(\Leftrightarrow x=18:2\)
\(\Leftrightarrow x=9\)