\(\left(x-2\right)\left(x+5\right)=0\\ \Rightarrow\left[{}\begin{matrix}x-2=0\\x+5=0\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}x=2\\x=-5\end{matrix}\right.\)
\(\left(x-2\right)\left(x+5\right)=0\)
\(x-2=0\)
\(x+5=0\)
\(x=2\)
\(x=-5\)
( x - 2 ) ( x + 5 ) = 0
⇔ x - 2 = 0 hoặc x + 5 = 0
x = 2 hoặc x = - 5
\(\left[{}\begin{matrix}x=2\\x=-5\end{matrix}\right.\)
\(=>x-2-0=>x=2\)
\(5+x=0=>x=-5\)
Vậy có 2 trường hợp:\(\left\{{}\begin{matrix}x=2\\x=-5\end{matrix}\right.\)