Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Nguyen Ngoc Quy

với x, y là các số thực dương thỏa mãn x+y=1. tìm giá trị nhỏ nhất của biểu thức Q= 2x^2 - y^2 +x +1/x +2020

Đặng Ngọc Quỳnh
19 tháng 12 2020 lúc 18:10

x+y=1=>y=1-x

\(Q=2x^2-y^2+x+\frac{1}{x}+2020\)\(=2x^2-\left(1-x\right)^2+x+\frac{1}{x}+2020\)\(=2x^2-\left(1-2x+x^2\right)+x+\frac{1}{x}+2020\)\(=2x^2-1+2x-x^2+x+\frac{1}{x}+2020\)

\(=\left(x^2+2x+1\right)+\left(x+\frac{1}{x}\right)+2018\)\(=\left(x+1\right)^2+\left(x+\frac{1}{x}\right)+2018\)

Ta có: \(\left(x+1\right)^2\ge0\forall x>0\)

Áp dụng BĐT Cô-si cho 2 số dương \(x\)và \(\frac{1}{x}\):

\(x+\frac{1}{x}\ge2\sqrt{x.\frac{1}{x}}=2\)

\(\Rightarrow Q\ge2+2018=2020\)

Dấu '=' xảy ra \(\Leftrightarrow\hept{\begin{cases}x+1=0\\x=\frac{1}{x}\end{cases}\Leftrightarrow x=-1}\)\(\Rightarrow y=1-\left(-1\right)=2\)

Vậy \(minQ=2020\Leftrightarrow x=-1;y=2\)

Khách vãng lai đã xóa

Các câu hỏi tương tự
Asuna Yuuki
Xem chi tiết
Aquarius Love
Xem chi tiết
Nguyễn Ngọc Minh
Xem chi tiết
phạm thanh nga
Xem chi tiết
Lê Minh Đức
Xem chi tiết
Học Sinh Giỏi Anh
Xem chi tiết
Diệp Nguyễn Thị Huyền
Xem chi tiết
hong doan
Xem chi tiết
Minh minh
Xem chi tiết