\(P=\dfrac{3}{x}+\dfrac{1}{3y}=\dfrac{3}{x}+\dfrac{\dfrac{1}{3}}{y}\ge\dfrac{\left(\sqrt{3}+\dfrac{1}{\sqrt{3}}\right)^2}{x+y}=\dfrac{\dfrac{16}{3}}{\dfrac{4}{3}}=4\)
\(min_P=4\Leftrightarrow x=1;y=\dfrac{1}{3}\)
\(P=\dfrac{3}{x}+\dfrac{1}{3y}=\dfrac{3}{x}+\dfrac{\dfrac{1}{3}}{y}\ge\dfrac{\left(\sqrt{3}+\dfrac{1}{\sqrt{3}}\right)^2}{x+y}=\dfrac{\dfrac{16}{3}}{\dfrac{4}{3}}=4\)
\(min_P=4\Leftrightarrow x=1;y=\dfrac{1}{3}\)
cho x,y>0 thỏa mãn x+y=1.tìm giá trị lớn nhất,giá trị nhỏ nhất của các biểu thức: A= 1/x^2+y^2 +1/xy,B= 1/x^2+y^2+3/4xy
Với x,y là những số thực thỏa mãn đẳng thức x2y2 + 2y+1=0, tìm giá trị lớn nhất và nhỏ nhất của biểu thức P=\(\frac{xy}{3y+1}\)
Cho hai số thực dương x,y và thỏa mãn x>= 3y , tìm giá trị nhỏ nhất của biểu thức A = \(\frac{x^3+y^3}{xy}\)
Tìm giá trị nhỏ nhất của biểu thức: A= (1+x)(1+1/y) +(1+y)(1+1/x) với x>0, y>0 thỏa mãn x^2 + y^2=1
Giả sử x, y là các số dương thỏa mãn đẳng thức x + y = (căn bậc hai của 10). Tìm giá trị của x và y để biểu thức P = (x^4 + 10(y^4 + 1) đạt giá trị nhỏ nhất. Tìm giá trị nhỏ nhất ấy
Gỉa sử x,y là các số dương thỏa mãn đẳng thức x+y=\(\sqrt{10}\). Tìm giá trị của x và y để biểu thức P=\(\left(x^4+1\right)\left(y^4+1\right)\) đạt giá trị nhỏ nhất. Tìm giá trị nhỏ nhất ấy.
Cho 2 số thực dương x;y thỏa mãn \(2\sqrt{xy}+\frac{x}{3}=1\). Tìm giá trị nhỏ nhất của biểu thức :
\(P=\frac{y}{x}+\frac{4x}{3y}+15xy\)
cho x>0, y>0 thỏa mãn x^2+y^2 =1. Tìm giá trị nhỏ nhất của biểu thức A=-2xy/1+xy
cho các số thực dương x , y thỏa mãn
\(\frac{y}{2x+3}=\frac{\sqrt{2x+3}+1}{\sqrt{y}+1}\)
tìm giá trị nhỏ nhất của biểu thức Q = xy-3y-2x-3