(n+7)2-(n+5)2
=[(n+7)+(n-5)].[(n+7)-(n-5)]
=(n+7+n+5).(n+7-n+5)
=(2n+2)12
=2(n+1)12
=24(n+1)
Vậy, đa thức trên chia hết cho 24 với mọi n
(n+7)2-(n+5)2
=[(n+7)+(n-5)].[(n+7)-(n-5)]
=(n+7+n+5).(n+7-n+5)
=(2n+2)12
=2(n+1)12
=24(n+1)
Vậy, đa thức trên chia hết cho 24 với mọi n
a/ Chứng minh ới mọi số nguyên \(n\)thì: \(\left(n^2-3n+1\right)\left(n+2\right)-n^3+2\)chia hết cho 5
b/ Chứng minh với mọi số nguyên \(n\)thì: \(\left(6n+1\right)\left(n+5\right)-\left(3n+5\right)\left(2n-10\right)\)chia hết cho 2
Bài 20: Chứng minh với mọi số nguyên n thì
d) \(\left(n+7\right)^2-\left(n-5\right)^2\)chia hết cho 24
e) \(\left(7n+5\right)^2-25\)chia hết cho 7 với \(n\inℤ\)
f) \(\left(n+6\right)^2-\left(n-6\right)^2\)chia hết cho 24 với \(n\inℤ\)
g) \(n^3-n\)chia hết cho 6 với mọi \(n\inℤ\)
CMR với mọi số nguyên n thì:
a/ \(n^2\left(n+1\right)+2n\left(n+1\right)\) chia hết cho 6
b/ \(\left(2n-1\right)^3-\left(2n-1\right)\) chia hết cho 8
c/ \(\left(n+7\right)^2-\left(n-5\right)^2\) chia hết cho 24
CMR với mọi x số nguyên n thì
\(\left(2-n\right)\left(n^2-3n+1\right)+\)\(n\left(n^2+12\right)+8\)chia hết cho 5
Chứng minh:
\(\left[n^2\left(n+1\right)+2n\left(n+1\right)\right]\) chia hết cho 6 với mọi \(n\in Z\)
CMR: n\(\in\)Z
a)\(\left(n+3\right)^2-\left(n-1\right)^2\)chia hết cho 8
b)\(\left(n+6\right)^2-\left(n-6\right)^2\)chia hết cho 24
c)\(\left(n^2+3n+1\right)^2-1\)chia hết cho 24 \(\forall\)n\(\in\)Z
Chứng minh vs mọi số nguyên n thì:
\(\left(n+7\right)^2-\left(n-5\right)^2⋮24\)
Hiệu các bình phương 2 số lể liên tiếp thì chia hết cho 8
Ai giúp mình vs mình chọn cho >.<
CM với mọi n thuộc Z
\(n^2\left(n+1\right)+2n\left(n+1\right)\) chia hết cho 6
CMR : A = \(\left[n^3\left(n^2-7\right)^2-36\right]\) chia hết cho 7 với n \(\in\) Z