nhân M vs 4 đc \(\frac{3x^2+\left(x-2y\right)^2+4xy}{xy}=\frac{3x}{y}+\frac{\left(x-2y\right)^2}{xy}+4\)
x-2y>=0 và x>=2y => 3x/y>=6 => 4M >=10
nhân M vs 4 đc \(\frac{3x^2+\left(x-2y\right)^2+4xy}{xy}=\frac{3x}{y}+\frac{\left(x-2y\right)^2}{xy}+4\)
x-2y>=0 và x>=2y => 3x/y>=6 => 4M >=10
Câu 1 cho x,y>0 thỏa mãn xy=6 tìm min Q=2/x+3/y+6/3x+2y
Câu 2 cho x,y là các số thực dương thỏa mãn x+y<=1 tìm min P=(1/x+1/y)nhân với căn (1+x^2y^2)
Bạn nào giúp mình nhanh với mình đang cần gấp T.T
cho x, y là các số dương thỏa mãn x>= 2y, tìm Min P=\(\frac{x^2+y^2}{xy}\)
Cho x,y là các số dương thỏa mãn xy=1.tìm Min của M biết M=(x+y+1)(x^2+y^2)+4/(x+y)
cho các số thực dương x,y thỏa mãn \(xy\ge x+y^2\)
Tìm min của F=x+3y
Mn giúp em với ạ
cho x,y,z là các số thực dương thỏa mãn x+y+2z=3.Tìm Min của :
P= x2+y2+4z2+\(\frac{xy+2yz+2zx}{x^2y+2y^2z+4z^2x}\)
cho x và y là số thực dương thỏa mãn x+2y>=2 tìm min 2x^2+16y^2+2/x+3/y
x,y dương thỏa mãn `xy+4<=2y`. Tìm max `P=(xy)/(x^2 +2y^2)`
Với x,y là các số dương thỏa mãn điều kiện x >= 2y( x lớn hơn hoặc bằng 2y).Tìm GTNN của biểu thức: \(M=\frac{x^2+y^2}{xy}\)
Tìm các số nguyên dương thỏa mãn 9(x^2y^2+xy^3+y^2+x)=201/7 (xy^2+y^3+1)