\(S=1-\sqrt{\left(3x-1\right)^2}+\left(3x-1\right)^2\)
đặt \(\sqrt{\left(3x-1\right)^2}=t\left(t\ge0\right)\) => \(S=1-t+t^2=\left(t^2-t+\frac{1}{4}\right)+\frac{3}{4}=\left(t-\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}\Rightarrow MinS=\frac{3}{4}\Leftrightarrow t=\frac{1}{2}\Leftrightarrow\sqrt{\left(3x-1\right)^2}=\frac{1}{2}\)
\(\Leftrightarrow\left(3x-1\right)^2=\frac{1}{4}\Leftrightarrow3x-1=+-\frac{1}{2}\Leftrightarrow3x=1+-\frac{1}{2}\Leftrightarrow x=\frac{\left(1+-\frac{1}{2}\right).}{3}\)