S = 1 - |1 - 3x| + |1-3x|2 = |1-3x|2 - 2.|1-3x|.\(\frac{1}{2}\) + \(\frac{1}{4}+\frac{3}{4}\) = (|1-3x| - \(\frac{1}{2}\) )2 + \(\frac{3}{4}\) \(\ge\) 0 + \(\frac{3}{4}\)=\(\frac{3}{4}\)
=> Min S = \(\frac{3}{4}\) khi |1-3x| = \(\frac{1}{2}\) <=> 1-3x = \(\frac{1}{2}\) hoặc 1 - 3x = -\(\frac{1}{2}\)
1-3x = \(\frac{1}{2}\) <=> x = 1/6
1-3x = -\(\frac{1}{2}\)<=> x = 1/2
Vậy....