\(3=a^2+b^2+c^2\ge\dfrac{\left(a+b+c\right)^2}{3}\)
\(\Rightarrow a+b+c\le3\)
- Áp dụng bất đẳng thức Caushy-Schwarz, ta có:
\(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\ge\dfrac{9}{a+b+c}\ge\dfrac{9}{3}=3\)
\(\Rightarrow\sum\dfrac{1}{a}\ge3\)
\(\sum\dfrac{8}{a^2+7}=\sum\dfrac{8}{a^2+1+1+1+1+1+1+1}\le\sum\dfrac{8}{8.\sqrt[8]{a^2}}=\sum\sqrt[8]{\dfrac{1}{a}.\dfrac{1}{a}.1.1.1.1.1.1}\le\sum\dfrac{\dfrac{1}{a}+\dfrac{1}{a}+1+1+1+1+1+1}{8}=\sum\left(\dfrac{1}{4a}+\dfrac{3}{4}\right)=\sum\dfrac{1}{4a}+\dfrac{9}{4}\le\sum\dfrac{1}{4a}+\sum\dfrac{3}{4a}=\sum\dfrac{1}{a}\left(đpcm\right)\)
- Dấu "=" xảy ra khi \(a=b=c=1\)