Với số m và số n bất kì,chứng tỏ rằng:
a) \(\left(m+1\right)^2\ge4m\)
b)\(m^2+n^2+2\ge2\left(m+n\right)\)
Với số m và số n bất kì, chứng tỏ rằng: m 2 + n 2 + 2 ≥ 2(m + n)
chứng minh rằng với mọi số nguyên m;n bất kì thì A=mn(m^4-n^4) chia hết cho 5
chứng minh rằng với mọi số nguyên m;n bất kì thì A=mn(m4-n4) chia hết cho 5
Cho m,n là các số tự nhiên, m lẻ:
Chứng minh rằng \(\left(2^m-1,2^n+1\right)=1\)
Với số m và số n bất kì, chứng tỏ rằng: m + 1 2 ≥ 4m
1.Cho \(n\inℕ^∗\)và a,b dương , chứng minh:
\(\frac{1}{a^n}+\frac{1}{b^n}\ge\frac{2^{n+1}}{\left(a+b\right)^n}\)
2.Cho m,n dương , chứng minh:
\(\frac{a^2}{m}+\frac{b^2}{n}\ge\frac{\left(a+b\right)^2}{m+n}\)
3.Cho m,n,p là các số dương, chứng minh:
\(\frac{a^2}{m}+\frac{b^2}{n}+\frac{c^2}{p}\ge\frac{\left(a+b+c\right)^2}{m+n+p}\)
Giúp mình với mn ơi!!
Chứng minh rằng: nếu pt \(x^2+px+q=0\) có một nghiệm gấp \(k\) lần một nghiệm của pt \(x^2+mx+n=0\) thì các hệ số \(m,n,p,q\) thỏa mãn hệ thức sau:
\(\left(q-k^2n\right)^2+k\left(p-mk\right)\left(knp-qm\right)=0\)
Bài 1:
a) Tìm các số tự nhiên n thỏa mãn bất phương trình:
(n + 2)2 - (x - 3) (n + 3) \(\le\)40
b) Tìm các số tự nhiên n thỏa mãn đồng thời cả hai bất phương trình sau:
4 (n + 1) + 3n - 6 < 19 và (n - 3)2 - (n + 4) (n - 4) \(\le43\)
Bài 2:
Chứng minh bất đẳng thức sau
\(A=\left(a+b\right)\left(\frac{1}{a}+\frac{1}{b}\right)\ge4\) \(B=\frac{a+b}{c}+\frac{b+c}{a}+\frac{c+a}{b}\ge6;\left(a,b,c>0\right)\)