\(\frac{1}{c^2\left(a+b\right)}\ge\frac{3}{2};\frac{z^3}{x\left(y+2z\right)}\ge\frac{x+y+z}{3}\)
\(\frac{1}{a^2\left(b+c\right)}+\frac{1}{b^2\left(c+a\right)}+\frac{1}{c^2\left(a+b\right)}\)
\(=\frac{abc}{a^2\left(b+c\right)}+\frac{abc}{b^2\left(c+a\right)}+\frac{abc}{c^2\left(a+b\right)}\)( do abc = 1 )
\(=\frac{bc}{ab+ac}+\frac{ac}{bc+ab}+\frac{ab}{ac+bc}\)(1)
Đặt \(\hept{\begin{cases}ab=x\\bc=y\\ac=z\end{cases}\left(x,y,z>0\right)}\)(1) trở thành \(\frac{x}{y+z}+\frac{y}{x+z}+\frac{z}{x+y}\)
và ta cần chứng minh \(\frac{x}{y+z}+\frac{y}{x+z}+\frac{z}{x+y}\ge\frac{3}{2}\)
Tuy nhiên đây là bất đẳng thức Nesbitt quen thuộc :D
nên ta có điều phải chứng minh
Đẳng thức xảy ra <=> x=y=z => a=b=c=1