Lê Thành An

Với a,b,c>0 a+b+c=1. Tìm min

\(P=2018\left(\frac{a^2}{b}+\frac{b^2}{c}+\frac{c^2}{a}\right)\) +\(\frac{1}{3\left(a^2+b^2+c^2\right)}\)

tth_new
4 tháng 11 2019 lúc 8:06

Ta có:

\(\frac{a^2}{b}+9a^2b\ge2\sqrt{9a^4}=6a^2\)

Suy ra \(\frac{a^2}{b}\ge6a^2-9a^2b\)

Tương tự hai BĐT còn lại rồi cộng theo vế suy ra

\(\frac{a^2}{b}+\frac{b^2}{c}+\frac{c^2}{a}\ge6\left(a^2+b^2+c^2\right)-9\left(a^2b+b^2c+c^2a\right)\) (*)

Mặt khác ta có BĐT sau: \(\left(a^2+b^2+c^2\right)\left(a+b+c\right)\ge3\left(a^2b+b^2c+c^2a\right)\)

\(\Leftrightarrow a\left(a-b\right)^2+b\left(b-c\right)^2+c\left(c-a\right)^2\ge0\) (đúng)

Do đó \(\left(a^2+b^2+c^2\right)=\left(a^2+b^2+c^2\right)\left(a+b+c\right)\ge3\left(a^2b+b^2c+c^2a\right)\)

Thay vào (*) ta có: \(\frac{a^2}{b}+\frac{b^2}{c}+\frac{c^2}{a}\ge6\left(a^2+b^2+c^2\right)-9\left(a^2b+b^2c+c^2a\right)\ge3\left(a^2+b^2+c^2\right)\)

Thay vào P: \(P=2018\left(\frac{a^2}{b}+\frac{b^2}{c}+\frac{c^2}{a}\right)+\frac{1}{3\left(a^2+b^2+c^2\right)}\)

\(\ge2018.3\left(a^2+b^2+c^2\right)+\frac{1}{3\left(a^2+b^2+c^2\right)}\)

\(=2017.3\left(a^2+b^2+c^2\right)+3\left(a^2+b^2+c^2\right)+\frac{1}{3\left(a^2+b^2+c^2\right)}\)

\(\ge2017\left(a+b+c\right)^2+2=2019\)

Đẳng thức xảy ra khi a = b = c= 1/3

P/s: Em trình bày hơi lủng củng nha!

Bình luận (0)
 Khách vãng lai đã xóa
tth_new
4 tháng 11 2019 lúc 20:05

Chợt nghĩ ra cách khác:Chú ý BĐT: \(\left(a^2+b^2+c^2\right)\left(a+b+c\right)\ge3\left(a^2b+b^2c+c^2a\right)\)

Có:\(\frac{a^2}{b}+\frac{b^2}{c}+\frac{c^2}{a}=\frac{a^4}{a^2b}+\frac{b^4}{b^2c}+\frac{c^4}{c^2a}\)

\(\ge\frac{\left(a^2+b^2+c^2\right)^2}{a^2b+b^2c+c^2a}\ge\frac{3\left(a^2+b^2+c^2\right)^2}{a^2+b^2+c^2}=3\left(a^2+b^2+c^2\right)\)

Rồi đến đây ok:v

Bình luận (0)
 Khách vãng lai đã xóa

Các câu hỏi tương tự
fan FA
Xem chi tiết
Thảo Nguyên Xanh
Xem chi tiết
Hoàng Đức Khải
Xem chi tiết
Ngô Hoài Thanh
Xem chi tiết
tống thị quỳnh
Xem chi tiết
Kim Taehyung
Xem chi tiết
vũ tiền châu
Xem chi tiết
Fire Sky
Xem chi tiết
trần xuân quyến
Xem chi tiết