Với a và b là hai số thực dương tùy ý, log (ab2) bằng
Giả sử a, b là các số thực sao cho x3 + y3 = a.103x + b.102x đúng với mọi số thực dương x, y, z thỏa mãn log (x + y) = z và log(x2 + y2) = z + 1. Giá trị của a+b bằng:
A. - 31 2
B. - 25 2
C. 31 2
D. 29 2
Với a, b là các số thực dương tùy ý và a khác 1, đặt P = log a b 3 + log a 2 b 6 Mệnh đề nào dưới đây đúng ?
A. P = 9 log a b
B. P = 27 log a b 15
C. P = 15 log a b
D. P = 6 log a b
Trong không gian với hệ tọa độ Oxyz, cho ba điểm A(a;0;0), B(0;b;0), C(0;0;c) với a, b, c là các số thực dương thay đổi tùy ý sao cho a 2 + b 2 + c 2 = 3 . Khoảng cách từ O đến mặt phẳng (ABC) lớn nhất bằng
A. 1 3
B. 3
C. 1 3
D. 1
Cho a, b là các số thực dương khác 1 thỏa mãn log a b = 3 . Giá trị của log b a b 3 a là:
cho hai số a,b là hai số thực đều lớn hơn 1. giá trị nhỏ nhất của biểu thức s=
\(\dfrac{1}{log_{b\sqrt[3]{a}}}\)+\(\dfrac{1}{log\sqrt[3]{ab^2}}\)
Cho a là số thực tùy ý và b, c là các số thực dương khác 1.
Hình vẽ bên là đồ thị của ba hàm số y = x a , y = log b x , y = log c x , x > 0 .
Khẳng định nào sau đây đúng?
A. a < c < b
B. a > c > b
C. a > b > c
D. a < b < c
Cho a là số thực dương tùy ý khác 1. Mệnh đề nào dưới đây đúng ?
A. log 2 a = 1 log 2 a
B. log 2 a = log a 2
C. log 2 a = - log a 2
D. log 2 a = 1 log a 2
Với a là số thực dương tùy ý, ln(5a) - ln(3a) bằng
A. .
B. .
C. .
D. .