Trong không gian Oxyz, cho hình bình hành ABCD với A(1; 2; 3), B(5; 0; -1), C(4; 3; 6) và D(a;b;c) Giá trị của a+b+c bằng
A. 3
B. 11
C. 15
D. 5
Cho hình bình hành ABCD với A(2; 4; -2), B(1; 1; -3), C(-2; 0; 5), D(-1; 3; 4). Diện tích của hình bình hành ABCD bằng:
A. 245 đvdt
B. 615 đvdt
C. 2 731 đvdt
D. 345 đvdt
Trong không gian với hệ trục tọa độ Oxyz, cho A ( 3 ; − 1 ; − 3 ) , B ( − 3 ; 0 ; − 1 ) , C ( − 1 ; − 3 ; 1 ) và mặt phẳng ( P ) : 2 x + 4 y + 3 z − 19 = 0 . Tọa độ M ( a , b , c ) thuộc (P) sao cho M A → + 2 M B → + 5 M C → đạt giá trị nhỏ nhất. Khi đó a + b + c bằng:
A. 4
B. 5
C. 6
D. 7
ChoA(1 ;2 ;3),B(-4 ;0 ;1) , C(-2 ;3 ;1)vàD(-3 ;2 ;-1). Tọa độ điểm A’ đối xứng với A qua mặt phẳng (BCD) là
A. A ' - 17 47 ; 16 47 ; 19 47
B. A ' - 187 53 ; 160 53 ; 199 53
C. A ' - 187 53 ; 266 53 ; 199 53
D. A ' 17 47 ; - 16 47 ; - 19 47
Trong hệ tục toạ độ không gian Oxyz, cho A(1;0;0), B(0;b;0), C(0;0;c), biết b,c>0, phương trình mặt phẳng (P): y-z+1= 0. Tính M=b+c biết (ABC) ⊥ (P),d(O;(ABC))=1/3
A. 2
B. 1/2
C. 5/2
D. 1
Biết ∫ π 4 π 3 1 c o s 4 x + sin x cos 3 x d x = a - b + c ln 2 + d ln ( 1 + 3 ) với a,b,c,d là các số hữu tỉ. Giá trị của abcd bằng
A. 0
B. −36
C. −24
D. −6
Trong không gian với hệ toạ độ Oxyz, cho bốn điểm A(1;1;1),B(-2;1;-3),C(4;1;-3),D(1; 1 + 2 3 ;-1). Gọi ( S 1 ) , ( S 2 ) , ( S 3 ) , ( S 4 ) lần lượt là các mặt cầu tâm A,B,C,D và có bán kính tương ứng là 2;3;3;2. Mặt cầu tiếp xúc ngoài với cả 4 mặt cầu ( S 1 ) , ( S 2 ) , ( S 3 ) , ( S 4 ) có bán kính bằng
A. 5 9
B. 3 7
C. 7 15
D. 6 11
Cho đường thẩng (d): 2x+y-1=0 và điểm A(0; -2), B(2; 3).
1) Lập phương trình đường thẳng d1 đi qua A và song song với d.
2) Lập phương trình đường thẳng d2 đi qua B và vuông góc với d. Từ đó tìm tọa độ hình chiếu H của B trên d.
3) Tìm điểm M thuộc trục hoành sao cho khoảng cách từ M đến d bằng \(2√5 \).
4) Tìm điểm N thuộc d sao cho khoảng cách từ N đến A bằng 5.
Trong hệ trục tọa độ Oxyz, cho đường thẳng d : x - 1 2 = y - 3 - 1 = z - 1 1 cắt mặt phẳng P : 2 x - 3 y + z - 2 = 0 tại điểm I(a;b;c). Khi đó a + b + c bằng
A. 9
B. 5
C. 3
D. 7
Cho: a,b>0, a+b= 1
C/m: \(a^3+b^3>=\frac{1}{4}\)